

- You should spend at least 20 minutes doing independent learning, using 'Quiz It,
Link It, Map It, Shrink It' each day
- Your teacher will remind you of the topics and the tasks to do
:бu!̣идәə łиәриәdәри।

:»омәшон

Name:..$~$

Homework Instructions

 | Subject: Maths | Term: Half term 2 Page I |
| :--- | :--- | Year Group: IIF

Algebra:Working with symbols			Number: Percentages		
1	Collecting like terms	$\begin{aligned} & \text { e.g. } 3 \mathrm{x}+7+8 x^{2}+2 x-10= \\ & 8 x^{2}+5 \mathrm{x}-3 \end{aligned}$ (x^{2} and x cannot be collected together when added or subtracted)	1	One quantity as a \% of another	Find 30 as a \% of 78. $30 / 78 \times 100=38.5 \%$
			2	\% increase and decrease	Increase 30 by 25% $30 \times 1.25=37.5$ Decrease 40 by 35% $40 \times 0.65=26$
2	Substitution	Replace the letters with numbers. $x=8$ and $y=-2$ Find $3 x+2 y$ $(3 x 8)+(2 x-2)=24-4=20$			
3	Expand single brackets	Multiple the outside of the brackets with all of the inside.$3(x-3)=3 x-9$	3	Find a \%	$\frac{\text { Change }}{\text { Original }} \times 100$
			4	Compound interest	$A=P(1+i)^{n}$ $A=$ final amount including principal $P=$ principal amount $i=$ interest rate per year $n=$ number of years invested
4	Expand double brackets	$\begin{aligned} & (x-9)(x+6) \\ & x^{2}+6 x-9 x-54 \\ & \text { Simplify: } x^{2}-3 x-54 \end{aligned}$			
			Ratio and Proportion: Ratio		
5	Factorise	$4 x+32=4(x+8)$	1	Relationship between fractions and ratio	5 blue sweets 2 red Ratio 5:2 Fraction of blue $5 / 7$
6	Factorise quadratics				
		numbers	2	Direct	
		$(x+3)(x+4) \quad \begin{aligned} & \text { give } 12 \\ & \text { and }+ \text { to } \end{aligned}$		proportion	$y=k x$ for a constant k

Geometry: Area and Perimeter		
1	Circumference Perimeter	$\Pi \times$ Diameter
2	Parallelogram Area	Base X perpendicular height
3	Trapezium Area	$(\mathrm{a}+\mathrm{b}) \times$ perpendicular height / 2
4	Triangle Area	Base X perpendicular height / 2
5	Parts of a circle	
6	Circle Area	$\Pi \times$ Radius ${ }^{2}$

1. Quiz It

Use the blank knowledge organiser above to self-quiz. Complete one section at a time, using Look, Cover, Write, Check

3. Map It

Use the space on the next page to create a mind-map or diagram to illustrate the knowledge from this topic.

2. Link It

4. Shrink It

3. Map it

Use this space to create a mind-map or diagram to illustrate the knowledge from this topic.

1. Quiz It

Use the blank knowledge organiser above to self-quiz. Complete one section at a time, using Look, Cover, Write, Check

3. Map It

Use the space on the next page to create a mind-map or diagram to illustrate the knowledge from this topic.

2. Link It

4. Shrink It

3. Map it

Use this space to create a mind-map or diagram to illustrate the knowledge from this topic.

1. Quiz It

Use the blank knowledge organiser above to self-quiz. Complete one section at a time, using Look, Cover, Write, Check

3. Map It

Use the space on the next page to create a mind-map or diagram to illustrate the knowledge from this topic.

2. Link It

4. Shrink It

3. Map it

Use this space to create a mind-map or diagram to illustrate the knowledge from this topic.

1. Quiz It

Use the blank knowledge organiser above to self-quiz. Complete one section at a time, using Look, Cover, Write, Check

3. Map It

Use the space on the next page to create a mind-map or diagram to illustrate the knowledge from this topic.

2. Link It

4. Shrink It

3. Map it

Use this space to create a mind-map or diagram to illustrate the knowledge from this topic.

Plot				
I	Act I	The Birlings are celebrating Sheila and Gerald's engagement, Birling makes a speech to the men, the Inspector arrives, Birling confesses he fired Eva, Sheila confesses that she was responsible for Eva's dismissal from Milwards.		
2	Act 2	Gerald admits to 'rescuing' Eva and then leaves to clear his head, Mrs Birling admits to refusing Eva aid, Mrs Birling argues that the father should be brought to justice (Eric is the father), Eric enters the room.		
3	Act 3	Eric admits to drinking and forceful sex with Eva, Eric admits he stole $£ 50$ from Birling, the Inspector delivers a polemic speech to the Birlings and exits. Gerald returns, Sheila and Eric feel guilty, Mr and Mrs Birling refuse to take responsibility, the Birlings and Gerald convince themselves the inspection was a hoax. The telephone rings, the Birlings are informed that a young girl has committed suicide and an inspector is on his way.		
Context				
1	Priestley	Fought in WWI. Socialist and member of the Labour Party. Concerned about social inequalities. Influential in developing the idea of the welfare state.		
2	Historical	Set in 1912 at the end of the Edwardian era. Titanic sank in 1912. WWI: 1914-1918. WW2: 1939-45. First performed 1945 in Soviet Union. First performed 1946 in Britain.		
3	Political	Liberal party in power in 1912. Labour party in power in 1945. Formation of the 'Welfare State' 1945 -195।. In 1912 only men over 21 with property could vote. 1903-1914 saw the rise of the Suffragette movement. 1918 all men over 21 and women over 30 who met a property qualification could vote. 1928: All people over 21 could vote.		
4	Social	1912: 10% of the population owned 90% of the wealth. No government assistance available. Charities were the only source of help for the poor.		
5	Literary	Fits three possible genres: Morality play, Well-made-play, Crime thriller (see Bitesize)		
Characters				
1	Inspector		Authoritarian, omniscient, influential, socialist, moralist.	
2	Mr Birling		Haughty, greedy, ignorant, obstinate, egotistical .	
3	Mrs Birling		Conceited, prejudiced, callous, obstinate, arrogant.	
4	Gerald		Charming, deceitful, manipulative, ingratiating, static.	
5	Sheila		Envious, petulant, impressionable, repentant.	
6	Eric		Reckless, dishonest, culpable, repentant.	
7	Eva		Vulnerable, impoverished, exploited, symbolic, victim.	

An Inspector Calls

1. Quiz It

Use the blank knowledge organiser above to self-quiz. Complete one section at a time, using Look, Cover, Write, Check

3. Map It

Use the space on the next page to create a mind-map or diagram to illustrate the knowledge from this topic.

2. Link It

4. Shrink It

3. Map it

Use this space to create a mind-map or diagram to illustrate the knowledge from this topic.

Beckfoot

The Poems:		
I	'Ozymandias' Percy Shelley	Narrator meets a traveller who tells him about a statue of Pharaoh Rameses II that has been destroyed by nature over time. Highlights the temporary nature of power.
2	'London' William Blake	Narrator walks round London and describes the misery he sees brought about by the corrupt power of institutions (church, monarchy) over their subjects.
3	'The Prelude’ William Wordsworth	Narrator takes a boat out on the lake. Sees a mountain appear and is overwhelmed by the power of nature compared to humans.
4	'My Last Duchess' Robert Browning	Duke shows portrait of his former wife who is now dead. The Duchess was flirtatious and displeased the Duke. We realise he probably had the Duchess killed. The Duke is planning his next marriage.
5	'The Charge of the Light Brigade' Alfred Lord Tennyson	Tribute to British cavalry who died during Crimean War. An incorrect order meant the cavalry charged into battle with swords, to be met by the Russians who were armed with guns.
6	'Exposure' Wilfred Owen	Winter on the front line in WWI. Nature personified as the main enemy and the men can only wait to die. Poem stresses insignificance of humans compared to nature.
7	'Storm on the Island' Seamus Heaney	A community are waiting to be hit by a storm. The power of the storm creates feelings of fear and trepidation.
8	'Bayonet Charan' Tad	Single soldier's experience of a charge towards enemy lines. Tha coldior foarc for hic lifo \& tha matrintic idoalc that

The Poems:

$\mathbf{9}$	'Remains' Simon Armitage	A group of soldiers shoot a man who's running away from a bank raid. The narrator doens't know if the man was armed or not and can't get the man's death off his mind. When back at home, the solider suffers PTSD.
I 0	'Poppies' Jane Weir	A mother describes her son leaving home to join the army. She fears for his safety and visits a familiar place that reminds her of him.
I I	'War Photographer' Carol Ann Duffy	In his dark room, a war photographer develops pictures taken in different warzones. He contrasts his experiences to rural England and people who seem oblivious to war torn places.
I $\mathbf{2}$	'Tissue' Imtiaz Dharker	Tissue is an extended metaphor for the fragility of life. Literal uses of paper are also discussed, such as recording names in the Koran, as well as the fact we are made from tissue, emphasising we are fragile.
I 3	'The Emigree' Carol Rumens	Speaker recalls a city she left as a child. The city has changed and perhaps was a scene of conflict but she protects the memory of her city. It might not be a real place but represents a time/emotion/speaker's childhood.
I4	'Checking Out Me History' John Agard	In school the narrator was taught British history \& not about his Caribbean roots. He contrasts nonsense topics he was taught with admirable figures excluded from history.
I 5	'Kamikaze' Beatrice Garland	A Japanese kamikaze pilot aborts his mission and when he returns home is shunned. His daughter imagines her father was reminded of his childhood and beauty of nature \& life whilst on the mission.

Key Vocabulary:

I	Monologue	A monologue poem features a single speaker who is a fictional character
$\mathbf{2}$	Caesura	Punctuation marks indicate a break in the line of poetry. Usually occurs in the middle of a line.
$\mathbf{3}$	Enjambment	The continuation of a sentence without a pause beyond the end of a line/stanza
$\mathbf{4}$	Free Verse	A poem without consistent metre patterns or rhyme scheme.
$\mathbf{5}$	Rhyme	Correspondence of sound between words or ending of words.
$\mathbf{6}$	Volta	In a sonnet, the volta is the turn of thought or argument.
$\mathbf{7}$	Couplet	Pair of successive lines, typically rhyming and of the same length.
$\mathbf{9}$	Refrain	Sonnet
$\mathbf{5}$	Stanza	One stanza, I4-line poem written in iambic pentameter.
A line or set of lines that		
repeatedly occurs in a		
poem.		

Key Vocabulary:		
I	Monologue	
2	Caesura	
3	Enjambment	
4	Free Verse	
5	Rhyme	
6	Volta	
7	Couplet	
8	Sonnet	
9	Refrain	
10	Stanza	

1. Quiz It

Use the blank knowledge organiser above to self-quiz. Complete one section at a time, using Look, Cover, Write, Check

3. Map It

Use the space on the next page to create a mind-map or diagram to illustrate the knowledge from this topic.

2. Link It

4. Shrink It

3. Map it

Use this space to create a mind-map or diagram to illustrate the knowledge from this topic.

Beckfoot

Assessment Criteria		
I	AOI	Assessed on unseen poem analysis only. Read, understand and respond to texts. Use textual references, including quotations, to support and illustrate interpretations.
$\mathbf{2}$	$\mathbf{A O 2}$	Assessed on unseen poem analysis and unseen poem comparison question. Analyse the language, form and structure used by a writer to create meanings and effects, using relevant subject terminology where appropriate.

Poetic Language		
I	Simile	A comparison made using the words "like" or "as."
$\mathbf{2}$	Metaphor	A comparison - made directly or indirectly - without using "like" or "as."
$\mathbf{3}$	Personification	Giving human characteristics to something which is not human.
$\mathbf{4}$	Onomatopoeia	Words which attempt to imitate sounds.
$\mathbf{5}$	Alliteration	A repetition of consonant sounds.
$\mathbf{6}$	Assonance	A repetition of vowel sounds
$\mathbf{7}$	Juxtaposition	Two things being placed close together for contrasting effect.
$\mathbf{8}$	Semantic field	A set of words relating to the same topic. "Foul" and "Shot" would appear in the semantic field of sports.
$\mathbf{9}$	Persona/ narrative voice	The voice/speaker of the poem who is different from the writer.
$\mathbf{1 0}$	Oxymoron	A figure of speech in which two contradictory things are placed together in a way which makes peculiar sense. For example, "friendly fire."

Poetic Structures and Forms		
I	Stanza	A group of lines separated from others in a poem.
$\mathbf{2}$	Rhyme	The repetition of syllable sounds - usually at the ends of lines, but sometimes in the middle of a line (called internal rhyme).
$\mathbf{3}$	Couplet	A pair of rhyming lines which follow on from one another.
$\mathbf{4}$	Enjambment	The running over of a sentence from one line to the next without a piece of punctuation at the end of the line.
$\mathbf{5}$	Caesura	A stop or a pause in a line of poetry - usually caused by punctuation.
$\mathbf{6}$	Blank verse	Poetry written in non-rhyming, ten syllable lines.
$\mathbf{7}$	Dramatic monologue	A poem in which an imagined speaker address the reader.
$\mathbf{8}$	Lyric	An emotional, rhyming poem, most often describing the emotions caused by a specific event.
$\mathbf{9}$	Sonnet	A fourteen line poem, with variable rhyme scheme, usually on the topic of love for a person, object or situation.
$\mathbf{1 0}$	Free verse	Non-rhyming, non-rhythmical poetry which follows the rhythms of natural speech.
\mathbf{y}		

How to approach an unseen poem		
I	What	What is the poem about? What happens? What is the topic/theme?
$\mathbf{2}$	How	How is this communicated? What language/structural techniques does the poet use to present this?
$\mathbf{3}$	Effect	What is the effect on the reader? What response do they have to the poem? What do they learn/understand?

Key Vocabulary		
I	Poet	The author of the poem.
2	Speaker	The voice of the poem - this may or may not be the poet themselves.
3	Reader	Who the poem is written for. Some poems are written with a specific reader in mind.
4	Form	The type of poem, i.e. lyric or sonnet.
5	Structure	How the poem has been put together couplet, rhyme scheme, stanzas etc.
6	Language	Techniques such as metaphor, personification etc. used by the poet to present the subject matter
7	Interpretation	A reader's understanding of and response to a poem.
8	Comparison	Comparing the methods two poets use to present their ideas in their poems.

			English Literature	Unseen Poetry			Year Group: 10 \& I I		enjoy earned
Assessment Criteria				Poetic Structures and Forms			Key Vocabulary		
1	AOI			1	Stanza				
				2	Rhyme		1	Poet	
2	AO2								
				3	Couplet		2	Speaker	
Poetic Language				4	Enjambment				
				5	Caesura				
I	Simile						3	Reader	
2		Metaphor		6	Blank verse				
3		Personification		7	Dramatic monologue		4	Form	
4		Onomatopoeia		8	Lyric				
5		Alliteration		9	Sonnet		5	Structure	
6		Assonance							
7		Juxtaposition		10	Free verse		6	Language	
8		Semantic field		How to approach an unseen poem					
9		Personal narrative voice		1	What		7	Interpretation	
				2	How				
10		Oxymoron		3	Effect		8	Comparison	

1. Quiz It

Use the blank knowledge organiser above to self-quiz. Complete one section at a time, using Look, Cover, Write, Check

3. Map It

Use the space on the next page to create a mind-map or diagram to illustrate the knowledge from this topic.

2. Link It

4. Shrink It

3. Map it

Use this space to create a mind-map or diagram to illustrate the knowledge from this topic.

1. Quiz It

Use the blank knowledge organiser above to self-quiz. Complete one section at a time, using Look, Cover, Write, Check

3. Map It

Use the space on the next page to create a mind-map or diagram to illustrate the knowledge from this topic.

2. Link It

4. Shrink It

3. Map it

Use this space to create a mind-map or diagram to illustrate the knowledge from this topic.

				Topic: Quantitative Chemistry		II	$\begin{aligned} & \text { enjoy } \\ & \text { learn } \\ & \text { licace } \end{aligned}$$\begin{aligned} & \text { suarn } \\ & \text { succeed } \end{aligned}$	
Calculation Types I			Calculations Types II			Key Vocabulary		
1	Relative atomic mass $\left(A_{r}\right)$	$A_{r}=$ sum of (isotope abundance x isotope mass no.) sum of abundances of all the isotopes Example: ${ }^{35} \mathrm{Cl} 75 \%$ abundance \& ${ }^{37} \mathrm{Cl} 25 \%$ abundance $(35 \times 75)+(37 \times 25) \div 100=35.5 A_{r} \text { of Chlorine }$	5	HT Only: Avogadro's Constant	A mole of a substance ALWAYS contains the same number of molecules/ions/particles/atoms - this is called Avogadro's Constant: 1 mole $=6.02 \times 10^{23}$ $\text { number of moles }=\frac{\text { number of particles }}{6.02 \times 10^{23}}$ Example: How many atoms are in 11.5 g of sodium? - Calculate number of moles first $=11.5 \div 23=0.5$ moles - No. of moles $(0.5) \times 6.02 \times 10^{23}=3.01 \times 10^{23}$ atoms	I	Law of Conservation of Mass	No atoms can be created or destroyed in a chemical reaction so the total mass of reactants must equal the total mass of the products
2	Relative formula or molecular mass $\left(M_{r}\right)$	Sum of the relative atomic masses of all the atoms shown in the formula Example MgSO_{4} contains: $\begin{aligned} & I \times M g: I \times 24=24 \\ & I \times S: I \times 32=32 \\ & 4 \times O: 4 \times 16=64 \end{aligned}$ So the relative formula mass $=24+32+64=\mathbf{1 2 0}$				2	Relative atomic mass (A_{r})	Average mass of an element taking into account the mass \& amount of each isotope it contains on a scale where the mass of a ${ }^{12} \mathrm{C}$ atom is 12
						3	Relative formula (or molecular)	The sum of the relative atomic masses of all the atoms shown in
			6	Concentration	Concentration is the amount of substance in a specific volume of a solvent. It can be expressed as mass (in g) per unit volume, $\mathrm{g} / \mathrm{dm}^{3}$ or $\mathrm{g} \mathrm{dm}{ }^{-3}$ or moles in a specific volume of solvent, mol/dm ${ }^{3}$ or $\mathrm{mol} \mathrm{dm}^{-3}$ (Chemistry only). You can increase the concentration of a solution by adding more solute/solid or reducing the volume of solvent.$\text { Concentration }\left(g / \mathrm{dm}^{3}\right)=\underset{\text { volume }\left(\mathrm{dm}^{3}\right)}{\text { mass }(\mathrm{g})}$		mass (M_{r})	the formula
3	\% mass of an element in a compound	$A_{r} \times \frac{\text { No. of atoms of that element }}{M_{r} \text { of the compound }} \times 100$ Example: Find the \% mass of O in $\mathrm{Na}_{2} \mathrm{O}$ A_{r} of Na is $23 ; A_{r}$ of O is 16				4	HT only: Mole	Measurement of the amount of substance / mass of a substance that contains 6.02×10^{23} particles
4	The mole \& A_{r} / M_{r}	$1 \times \mathrm{O}$ atom so $\mathrm{I} \times 16=16$ M_{r} of $\mathrm{Na}_{2} \mathrm{O}$ so $(2 \times 23)+(1 \times 16)=62$ $\%$ mass $=A_{r} \div M_{r} \times 100$ so $16 \div 62 \times 100=26 \%$ The mass of one mole of a substance in grams is equal to its relative atomic mass or relative formula mass.			$\begin{aligned} & \text { Volume }=\text { mass } \div \text { concentration so } 25 \div 0.65=\mathbf{3 8 . 5} \mathbf{d m}^{\mathbf{3}} \\ & \text { Chemistry Only: Concentration }=\begin{array}{c} \text { number of moles } \\ \left(\text { mol } / \mathrm{dm}^{3}\right) \end{array} \\ & \text { volume }\left(\mathrm{dm}^{3}\right) \end{aligned}$	5	HT only: Avogadro's constant	The number of atoms, molecules or ions in one mole of a given substance $\left(6.02 \times 10^{23}\right)$. One mole of any substance contains the same number of particles as the number of atoms in one mole of carbon 12.
		$\text { Number of moles }=\frac{\text { mass in } g \text { (of an element or compound) })}{M r(\text { of the element or compound })}$ Example: how many moles is 48 g of sulfur? A_{r} of S is 32 So mass in g divided by A_{r} is $48 \div 32=\mathbf{1 . 5}$ moles			Calculate the number of moles in a $0.55 \mathrm{dm}^{3}$ solution with a concentration of $0.35 \mathrm{~mol} / \mathrm{dm}^{3}$ No. of moles $=$ concentration \times volume $0.35 \times 0.55=\mathbf{0 . 1 9} \mathbf{~ m o l e s}$	6	Uncertainty	The range of values within which the true value is expected to lie. So, for example, a volume of gas collected would be $10 \mathrm{~cm}^{3}$ plus or minus Icm^{3} so expressed as $10 \mathrm{~cm}^{3}+/-\mathrm{Icm}^{3}$ so true value is anywhere between $9-11 \mathrm{~cm}^{3}$

$\underset{\text { Beckfoot }}{\text { ब®ंब. }}$				Topic: Quantitative Chemistry		: II		enjoy succeed
Calculation Types I			Calculations Types II			Key Vocabulary		
1	Relative atomic mass $\left(A_{r}\right)$	$\begin{aligned} & A_{r}= \\ & \begin{aligned} & \text { Example: }{ }^{35} \mathrm{Cl} 75 \% \text { abundance } \&{ }^{37} \mathrm{Cl} 25 \% \text { abundance } \\ &=\mathbf{3 5 . 5} \boldsymbol{A}_{\mathrm{r}} \text { of Chlorine } \end{aligned} \end{aligned}$	5	HT Only: The mole \& Avogadro's Constant	A mole of a substance ALWAYS contains the same number of molecules/ions/particles/atoms - this is called Avogadro's Constant: 1 mole $=6.02 \times 10^{23}$ $\text { number of moles }=\frac{\text { number of particles }}{6.02 \times 10^{23}}$	I	Law of Conservation of Mass	
2	Relative formula or molecular mass (M_{r})	Example MgSO_{4} contains: So the relative formula mass $=24+32+64=\mathbf{1 2 0}$			Example: How many atoms are in 11.5 g of sodium?	2	Relative atomic mass (A_{r})	
			6	Concentration	Concentration is the amount of substance in a specific volume of a solvent. It can be expressed as mass (in g) per unit volume, $\mathrm{g} / \mathrm{dm}^{3}$ or $\mathrm{g} \mathrm{dm}^{-3}$ or moles in a specific volume of solvent, $\mathrm{mol} / \mathrm{dm}^{3}$ or $\mathrm{mol} \mathrm{dm}^{-3}$ (Chemistry only). You can increase the concentration of a solution by adding more solute/solid or reducing the volume of solvent.$\text { Concentration }\left(\mathrm{g} / \mathrm{dm}^{3}\right)=\underbrace{\text { masm })}_{\text {volume }(\mathrm{g})}$	3	Relative formula (or molecular) mass $\left(M_{r}\right)$	
3	\% mass of an element in a compound	Example: Find the \% mass of O in $\mathrm{Na}_{2} \mathrm{O}$				4	HT only: Mole	
					Examples: What volume of water do I need to add to 25 g of common salt to get a concentration $0.65 \mathrm{~g} / \mathrm{dm}^{3}$?	5	HT only: Avogadro's constant	
4	The mole \& A_{r} / M_{r}				$\begin{gathered} \text { Chemistry Only: } \begin{array}{c} \text { Concentration } \\ \left(\mathrm{mol} / \mathrm{dm}^{3}\right) \end{array} \quad \frac{\text { number of moles }}{\text { volume }\left(\mathrm{dm}^{3}\right)} . ~ \end{gathered}$ Calculate the number of moles in a $0.55 \mathrm{dm}^{3}$ solution with a concentration of $0.35 \mathrm{~mol} / \mathrm{dm}^{3}$			
		$\text { Number of moles }=\frac{\text { mass in } g \text { (of an element or compound) })}{M r(\text { of the element or compound })}$ Example: how many moles is 48 g of sulfur?				6	Uncertainty	

1. Quiz It

Use the blank knowledge organiser above to self-quiz. Complete one section at a time, using Look, Cover, Write, Check

3. Map It

Use the space on the next page to create a mind-map or diagram to illustrate the knowledge from this topic.

2. Link It

4. Shrink It

3. Map it

Use this space to create a mind-map or diagram to illustrate the knowledge from this topic.

			Topic: Quantitative Chemistry				Year Group: II			
			Mass Conservation in Chemical Reactions					Key Vocabulary		
5	Chemistry Only Percentage yield (\%)	The amount of product formed in a reaction compared to the maximum theoretical mass that could be produced as a percentage $\text { percentage yield }=\frac{\text { mass of product actually made }}{\text { maximum theoretical mass of product }} \times 100$ Example: 25 g of salt was produced in a reaction but the expected mass was 80 g . What is the \% yield? $25 \div 80 \times 100=31.3 \%$	I	The law of mass conservation in terms of a chemical reaction...		The total number of each type of atom in a chemical reaction is the same before and after the reaction		7	Thermal decomposition	Reaction where heat causes a substance to break down into simpler substances
			2	How can we show conservation of mass in a chemical equation?		The total M_{r} of all the reactants will be equal to the total M_{r} of all the products		8	HT only: Limiting reactant/ reagent	The reactant in a reaction that determines the amount of products formed. Any other reagents are in excess \& some of them will be left over, unreacted
			3	Why might mass appear to go up in a reaction?		Due to one or more reactants being a gas found in air, that 'adds on' to the substance				
6	Chemistry Only Atom economy	A way of measuring what percentage of the mass of all the atoms in the reactants ends up in the desired product	4	Why might mass appear to go down?		One of the products is a gas that escapes				
		$\text { atom economy }=\frac{\text { relative formula mass of desired product }}{\text { relative formula mass of all reactants }} \times 100$ Example: The reaction below is used to produce calcium oxide (CaO). Calculate the atom economy of the reaction: $\begin{aligned} & \mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2} \\ & \mathrm{M}_{\mathrm{r}} \text { of } \mathrm{CaO}=40+16=56 \text { (desired product) } \\ & \mathrm{M}_{\mathrm{r}} \text { of } \mathrm{CaCO}=100 \text { (Formula mass of all reactants) } \\ & \text { Therefore, } 56 \div 100 \times 100=56 \% \end{aligned}$	HT only: Reacting Mass Calculations: the steps					9	HT only: Excess	When the amount of a reactant is greater than the amount that can react
			I	Example question	What mass of calcium chloride $\left(\mathrm{CaCl}_{2}\right)$ is produced when 3.7 g of calcium hydroxide $\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)$ reacts with an excess of hydrochloric acid (HCl)?					
								10	Chemistry Only: Yield	The amount of product formed in a reaction
			2	Write out the balanced equation \& identify what we know \& don't know	$\begin{aligned} & \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & 3.7 \mathrm{~g} \end{aligned}$					
								II	Chemistry Only: Titration	A technique used to find the concentration of a solution using a solution of known concentration
			3	Work out the moles of what you know	$\begin{array}{ll} \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} & \text { Remember moles }=\text { mass } \div \mathrm{Mr} \\ 3.7 \div 74 & \mathrm{Mr} \text { of } \mathrm{Ca}(\mathrm{OH})_{2} \text { is } 74 \\ =0.05 \mathrm{~mol} & \end{array}$					
	Chemistry Only Gas volumes	1 mole of a gas at room temperature $\left(20^{\circ} \mathrm{C}\right)$ and pressure (1 atm) occupies a volume of $24 \mathrm{dm}^{3}$ $\text { in dme Volume of gas }=\frac{\text { Mass of gas }}{M_{1} \text { of gas }} \times 24$ Example: vvnat volume will B g of CO_{2} gas occupy at room temperature \& pressure? Volume $=$ mass $\div M_{r} \times 24$ so $88 \div 44=2 \times 24=\mathbf{4 8} \mathrm{dm}^{3}$	4	know Check ratio in the balanced equation	I unit of CaCl_{2} is formed from I unit of $\mathrm{Ca}(\mathrm{OH})_{2}$ So whatever moles of what you have worked out $\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)$ will make the same moles of what you need to work out (calcium chloride)			12	Chemistry only: Concordant	Two or more results from titration where the values are very close together (within $0.10 \mathrm{~cm}^{3}$)
			5	Calculate the number of moles of what you don't know Calculate the mass	We will make 0.05 moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ as the ratio of both compounds in the equation is $1: 1$			13	Chemistry only: End point	The moment when the indicator changes colour in a titration showing that the moles of acid \& alkali are equal
			6	Calculate the mass of what you don't know	So in the last step we are converting moles to a mass in grams Mass $=M_{r} \times$ Moles M_{r} of CaCl_{2} is III $111 \times 0.05=\mathbf{5 . 6 g}$					

1. Quiz It

Use the blank knowledge organiser above to self-quiz. Complete one section at a time, using Look, Cover, Write, Check

3. Map It

Use the space on the next page to create a mind-map or diagram to illustrate the knowledge from this topic.

2. Link It

4. Shrink It

3. Map it

Use this space to create a mind-map or diagram to illustrate the knowledge from this topic.

Subject: Science (Chemistry)	Topic: Quantitative Chemistry	Year Group: II

Titration Method (Chemistry only)

A student investigated the volume of hydrochloric acid that reacted with $25 \mathrm{~cm}^{3}$ potassium hydroxide. Describe a titration method the student could use in this investigation

- Measure $25 \mathrm{~cm}^{3}$ potassium hydroxide using a pipette
- Place the potassium hydroxide into a conical flask
- Fill the burette with hydrochloric acid and record the starting volume
- Add a suitable indicator to the conical flask, e.g., Phenolphthalein
- Place a white tile under flask
- Add the hydrochloric acid until the indicator changes colour
- Add acid slowly and dropwise whilst at the same time swirling the flask
- Phenolphthalein will change from pink to colourless permanently at the endpoint
- Record the volume of hydrochloric acid added
- The tire value is the difference between the initial and final burette reading
- Repeat until you get 2 concordant titres/within $0.1 \mathrm{~cm}^{3}$ of each other

Titration Calculation - the steps (Chemistry only)

In a different titration, a student used $25.00 \mathrm{~cm}^{3}$ of potassium hydroxide, KOH . This volume reacted with exactly $26.00 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid. The equation for the reaction is: $2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$. What is the concentration of the potassium hydroxide solution in $\mathrm{mol} \mathrm{dm}^{-3}$?

I Calculate the moles of the reactant that you have the volume and concentration for (in this case it is the sulfuric acid). Remember, moles $=$ volume $\left(\mathrm{dm}^{3}\right) \times$ concentration ($\mathrm{mol} \mathrm{dm}{ }^{-3}$)
$(26.00 / \mathrm{IO00}) \times 0.100=0.00260 \mathrm{~mol}$
2 Now determine the moles of potassium hydroxide you have. Look at the equation. You can see you have a 2:1 ratio. This means you have double the moles of KOH . $2 \times 0.00260=0.0052 \mathrm{~mol}$

3 Now you can work out the concentration of KOH using concentration $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)=$ moles $/$ volume $\left(\mathrm{dm}^{3}\right)$ $0.0052 \times(25 / \mathrm{I} 000)=0.208 \mathrm{~mol} \mathrm{dm}^{-3}$

```
Subject: Science (Chemistry) 
```


Titration Method (Chemistry only)

A student investigated the volume of hydrochloric acid that reacted with $25 \mathrm{~cm}^{3}$ potassium hydroxide. Describe a titration method the student could use in this investigation.

Titration Calculation - the steps (Chemistry only)

In a different titration, a student used $25.00 \mathrm{~cm}^{3}$ of potassium hydroxide, KOH . This volume reacted with exactly $26.00 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ sulfuric acid. The equation for the reaction is: $2 \mathrm{KOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$. What is the concentration of the potassium hydroxide solution in $\mathrm{mol} \mathrm{dm}^{-3}$?

I Calculate the moles of the reactant that you have the volume and concentration for (in this case it is the sulfuric acid). Remember, moles $=$ volume $\left(\mathrm{dm}^{3}\right) \times$ concentration ($\mathrm{mol} \mathrm{dm}{ }^{-3}$)

2 Now determine the moles of potassium hydroxide you have. Look at the equation. You can see you have a 2:1 ratio. This means you have double the moles of KOH .

3 Now you can work out the concentration of KOH using concentration $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)=$ moles $/$ volume (dm^{3})

1. Quiz It

Use the blank knowledge organiser above to self-quiz. Complete one section at a time, using Look, Cover, Write, Check

3. Map It

Use the space on the next page to create a mind-map or diagram to illustrate the knowledge from this topic.

2. Link It

4. Shrink It

3. Map it

Use this space to create a mind-map or diagram to illustrate the knowledge from this topic.

Topic: Inheritance, Variation \& Evolution

Knowledge: Mitosis Vs Meiosis

	Mitosis (for growth \& repair)	Meiosis (makes gametes)
I	Produces two daughter cells	Produces four daughter cells
$\mathbf{2}$	Daughter cells are genetically identical	Daughter cells are not genetically identical
$\mathbf{3}$	The cells divide once	The cells divides twice
$\mathbf{4}$	The chromosome number of the daughter cell is the same as the parent cell. In humans this is 46 chromosomes.	The chromosome number is reduced by half. In humans, this is 23 chromosomes.
$\mathbf{5}$	Used for growth and repair, and asexual reproduction.	Produces gametes for sexual reproduction.

[^0]| Key Vocabulary | | Allele |
| :--- | :--- | :--- |
| I | An alternative form
 of a gene | |
| 2 | Asexual
 reproduction | The production of
 offspring from a
 single parent by
 mitosis. Offspring are
 clones of the parent. |
| 3 | Chromosome | Structure that
 contains the DNA of
 an organism, found in
 the nucleus |
| 4 | DNA | A polymer that is
 made up of two
 strands that form a
 double helix |
| 5 | Dominant | An allele that is
 always expressed,
 even if only one copy
 is present |
| 6 | Gene | A small section of
 DNA that codes for
 a specific protein |
| 7 | Genome | The entire genetic
 material of an
 organism |

Key Vocabulary

8	Genotype	The combination of Alleles
9	Heterozygous	A genotype that has two different alleles, one dominant one recessive
10	Homozygous	A genotype that has two of the same alleles, either two deminant or two recessive
I1	Mutation	A change in DNA
I2	Phenotype	The characteristic expressed because of the combination of alleles
I3	Recessive	An allele that is only expressed if two copies of it are present
14	Sexual reproduction	The production of offspring by combining genetic information from the gametes of two parents. Leads to variation in offspring

I. Quiz It

3. Map It

Use the space on the next page to create a graphic organiser to illustrate the knowledge from this topic.

2. Link It

4. Shrink It

3. Map it

Use this space to create a mind-map or diagram to illustrate the knowledge from this topic.

Topic: Inheritance, Variation \& Evolution
Year Group: II

enjoy sualn succed

 Beckfoot (Biology)| Knowledge: Fossils | |
| :--- | :--- |
| Fossils could be: | |
| I | The actual remains of an organism that
 has not decayed |
| $\mathbf{2}$ | Mineralised forms of the harder parts of
 an organism, such as bones |
| $\mathbf{3}$ | Traces of organisms such as footprints
 or burrows |
| Many early life forms were soft bodied so have
 left few traces behind. | |
| Fossils help us understand how much or little
 organisms have changed as life developed on
 earth | |

Knowledge: Classification

I	Linnaeus classified living things into Kingdom, Phylum, Class, Order, Family, Genus and Species
2	Organisms are named by the binomial system of genus and species
3	Due to evidence from chemical analysis, there is now a 'three-domain system' developed by CarIWoese -Bacteria,
Archaea, Eukaryota	

Knowledge: Evolution

All species of living things have evolved from simple life forms by natural selection

I	If a variant/characteristic is advantageous in an environment, then the individual will be better able to compete
$\mathbf{2}$	This means they are more likely to survive and reproduce
$\mathbf{3}$	The offspring will inherit the advantageous allele

Knowledge:Variation	
May be due to differences in:	
I	The genes that have been inherited (genetic causes)
2	The conditions in which they have developed (environmental causes)
3	A Combination of genes and the environment

Knowledge: Reducing antibiotic resistance

I	Antibiotics should only be used when really needed and for serious bacterial infections only (not viral)
2	Patients should complete their courses of antibiotics, even if they feel better.
$\mathbf{3}$	The agricultural use of antibiotics should be restricted.

Key Vocabulary		
I	Evolution	A change in the inherited characteristics of a population over time through natural selection
$\mathbf{2}$	Extinction	The permanent loss of all members of a species
$\mathbf{3}$	Natural selection	The process by which organisms that are better suited to an evvironment are more likely reproduce survive and
$\mathbf{4}$	Speciation	Two species evolve from one organism but can no longer breed to produce fertile offspring

[^1]
I. Quiz It

3. Map It

Use the space on the next page to create a graphic organiser to illustrate the knowledge from this topic.

2. Link It

4. Shrink It

3. Map it

Use this space to create a mind-map or diagram to illustrate the knowledge from this topic.
$\underset{\text { Beckfoot }}{\sim \text { 白白 }}$
Topic: Inheritance, Variation \& Evolution
Year Group: I I Advantages/disadvantages of the 2 types of reproduction

Sexual reproduction

I	produces variation in the offspring
2	if the environment changes variation gives a survival advantage by natural selection
3	natural selection can be speeded up by humans in selective breeding to increase food production.

Asexual reproduction	
I	only one parent needed
2	more time and energy efficient as do not need to find a mate
3	faster than sexual reproduction
4	many identical offspring can be produced when conditions are favourable.

You can use the converse of these statements to describe the disadvantages of each type of reproduction.

Mutations changes in DNA sequence/genes

Sexual OR asexual

Some organisms reproduce by both methods depending on the circumstances.

circumstances.		
I	Malarial parasites reproduce asexually in the human host, but sexually in the mosquito.	2
2	Many fungi reproduce asexually by spores but also reproduce sexually to give variation.	3
3	Many plants produce seeds sexually, but also reproduce asexually by runners such as strawberry plants, or bulb division such as daffodils.	4
	Structure of DNA	5
Made up of nucleotides which consist of a common sugar and phosphate group with one of four different bases attached to the sugar.		

Protein synthesis

I	DNA is copied to make a template strand. This needs to happen as DNA is too large to leave the nucleus.
2	Template strand moves to the ribosomes where it binds.
3	Carrier molecules bring amino acids to the template strand for every 3 bases.
4	Amino acids join together in a chain which will eventually form a protein.
5	The protein is released from the ribosome and the protein folds up to form a unique shape. This unique shape enables the proteins to do their job as enzymes, hormones or forming structures in the body such as collagen.
I	Mutations occur continuously. Most do not alter the protein, or only alter it slightly so that its appearance or function is not changed.
2	A few mutations code for an altered protein with a different shape. An enzyme may no longer fit the substrate binding site or a structural protein may lose its strength.
3	Not all parts of DNA code for proteins. Non- coding parts of DNA can switch genes on and off, so variations in these areas of DNA may affect how genes are expressed.
Mutations - changes to the base sequence	

I. Quiz It

3. Map It

Use the space on the next page to create a graphic organiser to illustrate the knowledge from this topic.

2. Link It

4. Shrink It

3. Map it

Use this space to create a mind-map or diagram to illustrate the knowledge from this topic.

Read Like a Beckfooter

Vocabulary

Do you understand the words of the text?

Highlight any you're unsure of, then ask yourself these questions:
1.Can you work out the word from its context? What does it seem like it means?
2. Does it look like any other words you know? Could it mean something similar?
3. If you can't figure it out for yourself, look the word up in a dictionary or online

Comprehension

This means understanding a text. There are two things to think about:

1. Do you understand what it means literally?
2. Can you see what's implied?

To achieve these things:

1. Slow down your reading many people miss key parts in texts because they go too fast
2. Look carefully at punctuation, which is designed to help you take pauses in the right places
3. Ask a trusted adult to read the text to/with you
[^2]
Summarising

Follow these steps:
1.Summarise the text in five words
2.Summarise the text in twenty words
3.Summarise the text in fifty words

Each time you will have added more information, but you won't have included everything.
By following the process, you've decided what matters and what doesn't.

Revise Like a Beckfooter

Summary: How to flash cards

Avoid answering the questions in your head: research shows that when you read a question and answer it in your head, you aren't actually testing your knowledge effectively. Say the answer out loud or write it down before checking it against the card, so you are truly testing if you can explain the answer properly

Summary: How to create a mind map

Revise Like a Beckfooter

Summary: Dual Coding

Dual coding is the process of blending both words and pictures while learning. Viewing those two formats gives us two different representations of the same piece of information.

Summary: Spacing

- Spacing is regularly revisiting material so that you are doing liftle and offen instead of all at once.
- Doing a little amount regularly is more effective than doing a lot all at once. We do this so that we don't get swamped and Doing a little am
overwhelmed

To commit something to memory, it takes time and repetition.

Optimum Spacing

- Research suggests there is an 'optimal gap' between revision sessions so you can retain the information.
- If the test is in a month, you should review the information around once a week. If the test is in a week, create time once a day

Why use Spacing?
Doing something liftle and often - spacing - beats doing it at once, or cramming -The time in between revision allows you to forget and re-learn the information. which cements it in your long-termmemory

It cements information into your long-term memory
We can learn more information over time than in one longer session It helps you revise more efficiently

Time to the test	Revision Gap
1 Week	1 -2 days
1 Month	1 week
3 Months	2 weeks
6 Months	3 weeks
1 Year	1 month

As well as knowing the most effective techniques for revision, it is really important that you consider the best times for you to revise each topic/subject. The two strategies below, (spacing and interleaving) will help you to put together a revision timetable that will help you to strengthen your memory and choose what you revise and when.

Additional Revision Strategies

Brain Dump

Choose a topic and write down as much as you can remember, without referring to your notes. Check your notes and see what you missed then try fill the gaps without the notes. Check your notes a third time and add the missing information.

Flash cards

Write flash cards for each topic, in all subjects, then mix them up for the most effective revision. Check out the Leitner System for effective spacing and interleaving. Keep your flash cards simple - one question, one answer per card.

Map it out

Take an essay question or writing question and map out your answer, without writing a full response. Look at the mark scheme and deicide if you plan meets the criteria. DO this for a number of questions, then choose one and write the full response.

Past papers

Ask your teacher for practice questions or exam papers. Complete them without notes in the exam conditions, then check you answers and identify the gaps in your knowledge, so you can target your revision.

Quizzes

Write a set of questions and answers and ask someone to test you. Its important to either write or say your answers loud. Reading through quizzes in your head can give you a false sense of security.

Thinking hard: Reduce

Read a section of your notes then put them aside and reduce what you need into 3 bullet points, each one no more than 10 words. Look back at the notes and decide if you missed anything important. Hide the notes and write a fourth bullet point.

Practice Introductions

For essay subjects, tale a past exam question and practice writing effective introductions and conclusion. Look back at your notes and remind yourself of the important things to remember. Practice for different topics, texts and papers.

Thinking hard: Transform

Read a paragraph from your notes or a text book, and transform it into a diagram, chart or sketch - no words allowed. OR Look a diagram in science, for example, and transform it into a paragraph of explanation.

Thinking hard: Connect

For each subject, consider the exam paper and group together questions that require the same technique to answer. Write down the requirements for each type. Find a previous example you have completed and identify where you've met the criteria.

Key vocabulary

For a particular topic, make a list of key vocabulary, then do the following: define each word; use each term in a sentence; create a question where the key word is the answer; identify other words which connect to each of the words in your list.

Revision Timetable

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
$\mathbf{8 : 3 0 - 9 : 3 0 ~}$	LESSON	LESSON	LESSON	LESSON	LESSON		
9:30-10:30	LESSON	LESSON	LESSON	LESSON	LESSON		
10:30-10:55	TUtor Time						
10:55-11:20	BREAK	BREAK	BREAK	BREAK	BREAK		
11:20-12:20	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{1 2 : 2 0 - 1 : 2 0 ~}$	LUNCH	LUNCH	LUNCH	LUNCH	LUNCH		
1:20-1:50	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{1 : 5 0 - 2 : 4 5 ~}$	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{2 : 4 5 - 3 : 4 5 ~}$							
$\mathbf{3 : 4 5 - 4 : 1 5 ~}$							
$\mathbf{4 : 1 5 - 4 : 4 5 ~}$							
$\mathbf{4 : 4 5 - 5 : 1 5 ~}$							
$\mathbf{5 : 1 5 - 5 : 4 5 ~}$							
$\mathbf{5 : 4 5 - 6 : 1 5 ~}$							
$\mathbf{6 : 1 5 - 6 : 4 5 ~}$							
$\mathbf{6 : 4 5 - 7 : 1 5 ~}$							
$\mathbf{7 : 1 5 - 8 : 4 5}$							

To do
ubjects covered this half term

Revision Timetable

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
$\mathbf{8 : 3 0 - 9 : 3 0 ~}$	LESSON	LESSON	LESSON	LESSON	LESSON		
9:30-10:30	LESSON	LESSON	LESSON	LESSON	LESSON		
10:30-10:55	TUtor Time						
10:55-11:20	BREAK	BREAK	BREAK	BREAK	BREAK		
11:20-12:20	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{1 2 : 2 0 - 1 : 2 0 ~}$	LUNCH	LUNCH	LUNCH	LUNCH	LUNCH		
1:20-1:50	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{1 : 5 0 - 2 : 4 5 ~}$	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{2 : 4 5 - 3 : 4 5 ~}$							
$\mathbf{3 : 4 5 - 4 : 1 5 ~}$							
$\mathbf{4 : 1 5 - 4 : 4 5 ~}$							
$\mathbf{4 : 4 5 - 5 : 1 5 ~}$							
$\mathbf{5 : 1 5 - 5 : 4 5 ~}$							
$\mathbf{5 : 4 5 - 6 : 1 5 ~}$							
$\mathbf{6 : 1 5 - 6 : 4 5 ~}$							
$\mathbf{6 : 4 5 - 7 : 1 5 ~}$							
$\mathbf{7 : 1 5 - 8 : 4 5}$							

To do
ubjects covered this half term

Revision Timetable

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
$\mathbf{8 : 3 0 - 9 : 3 0 ~}$	LESSON	LESSON	LESSON	LESSON	LESSON		
9:30-10:30	LESSON	LESSON	LESSON	LESSON	LESSON		
10:30-10:55	TUtor Time						
10:55-11:20	BREAK	BREAK	BREAK	BREAK	BREAK		
11:20-12:20	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{1 2 : 2 0 - 1 : 2 0 ~}$	LUNCH	LUNCH	LUNCH	LUNCH	LUNCH		
1:20-1:50	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{1 : 5 0 - 2 : 4 5 ~}$	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{2 : 4 5 - 3 : 4 5 ~}$							
$\mathbf{3 : 4 5 - 4 : 1 5 ~}$							
$\mathbf{4 : 1 5 - 4 : 4 5 ~}$							
$\mathbf{4 : 4 5 - 5 : 1 5 ~}$							
$\mathbf{5 : 1 5 - 5 : 4 5 ~}$							
$\mathbf{5 : 4 5 - 6 : 1 5 ~}$							
$\mathbf{6 : 1 5 - 6 : 4 5 ~}$							
$\mathbf{6 : 4 5 - 7 : 1 5 ~}$							
$\mathbf{7 : 1 5 - 8 : 4 5}$							

To do
ubjects covered this half term

Revision Timetable

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
$\mathbf{8 : 3 0 - 9 : 3 0 ~}$	LESSON	LESSON	LESSON	LESSON	LESSON		
9:30-10:30	LESSON	LESSON	LESSON	LESSON	LESSON		
10:30-10:55	TUtor Time						
10:55-11:20	BREAK	BREAK	BREAK	BREAK	BREAK		
11:20-12:20	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{1 2 : 2 0 - 1 : 2 0 ~}$	LUNCH	LUNCH	LUNCH	LUNCH	LUNCH		
1:20-1:50	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{1 : 5 0 - 2 : 4 5 ~}$	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{2 : 4 5 - 3 : 4 5 ~}$							
$\mathbf{3 : 4 5 - 4 : 1 5 ~}$							
$\mathbf{4 : 1 5 - 4 : 4 5 ~}$							
$\mathbf{4 : 4 5 - 5 : 1 5 ~}$							
$\mathbf{5 : 1 5 - 5 : 4 5 ~}$							
$\mathbf{5 : 4 5 - 6 : 1 5 ~}$							
$\mathbf{6 : 1 5 - 6 : 4 5 ~}$							
$\mathbf{6 : 4 5 - 7 : 1 5 ~}$							
$\mathbf{7 : 1 5 - 8 : 4 5}$							

To do
ubjects covered this half term

Revision Timetable

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
$\mathbf{8 : 3 0 - 9 : 3 0 ~}$	LESSON	LESSON	LESSON	LESSON	LESSON		
9:30-10:30	LESSON	LESSON	LESSON	LESSON	LESSON		
10:30-10:55	TUtor Time						
10:55-11:20	BREAK	BREAK	BREAK	BREAK	BREAK		
11:20-12:20	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{1 2 : 2 0 - 1 : 2 0 ~}$	LUNCH	LUNCH	LUNCH	LUNCH	LUNCH		
1:20-1:50	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{1 : 5 0 - 2 : 4 5 ~}$	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{2 : 4 5 - 3 : 4 5 ~}$							
$\mathbf{3 : 4 5 - 4 : 1 5 ~}$							
$\mathbf{4 : 1 5 - 4 : 4 5 ~}$							
$\mathbf{4 : 4 5 - 5 : 1 5 ~}$							
$\mathbf{5 : 1 5 - 5 : 4 5 ~}$							
$\mathbf{5 : 4 5 - 6 : 1 5 ~}$							
$\mathbf{6 : 1 5 - 6 : 4 5 ~}$							
$\mathbf{6 : 4 5 - 7 : 1 5 ~}$							
$\mathbf{7 : 1 5 - 8 : 4 5}$							

To do
ubjects covered this half term

Revision Timetable

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
$\mathbf{8 : 3 0 - 9 : 3 0 ~}$	LESSON	LESSON	LESSON	LESSON	LESSON		
9:30-10:30	LESSON	LESSON	LESSON	LESSON	LESSON		
10:30-10:55	TUtor Time						
10:55-11:20	BREAK	BREAK	BREAK	BREAK	BREAK		
11:20-12:20	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{1 2 : 2 0 - 1 : 2 0 ~}$	LUNCH	LUNCH	LUNCH	LUNCH	LUNCH		
1:20-1:50	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{1 : 5 0 - 2 : 4 5 ~}$	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{2 : 4 5 - 3 : 4 5 ~}$							
$\mathbf{3 : 4 5 - 4 : 1 5 ~}$							
$\mathbf{4 : 1 5 - 4 : 4 5 ~}$							
$\mathbf{4 : 4 5 - 5 : 1 5 ~}$							
$\mathbf{5 : 1 5 - 5 : 4 5 ~}$							
$\mathbf{5 : 4 5 - 6 : 1 5 ~}$							
$\mathbf{6 : 1 5 - 6 : 4 5 ~}$							
$\mathbf{6 : 4 5 - 7 : 1 5 ~}$							
$\mathbf{7 : 1 5 - 8 : 4 5}$							

To do
ubjects covered this half term

Revision Timetable

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
$\mathbf{8 : 3 0 - 9 : 3 0 ~}$	LESSON	LESSON	LESSON	LESSON	LESSON		
9:30-10:30	LESSON	LESSON	LESSON	LESSON	LESSON		
10:30-10:55	TUtor Time						
10:55-11:20	BREAK	BREAK	BREAK	BREAK	BREAK		
11:20-12:20	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{1 2 : 2 0 - 1 : 2 0 ~}$	LUNCH	LUNCH	LUNCH	LUNCH	LUNCH		
1:20-1:50	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{1 : 5 0 - 2 : 4 5 ~}$	LESSON	LESSON	LESSON	LESSON	LESSON		
$\mathbf{2 : 4 5 - 3 : 4 5 ~}$							
$\mathbf{3 : 4 5 - 4 : 1 5 ~}$							
$\mathbf{4 : 1 5 - 4 : 4 5 ~}$							
$\mathbf{4 : 4 5 - 5 : 1 5 ~}$							
$\mathbf{5 : 1 5 - 5 : 4 5 ~}$							
$\mathbf{5 : 4 5 - 6 : 1 5 ~}$							
$\mathbf{6 : 1 5 - 6 : 4 5 ~}$							
$\mathbf{6 : 4 5 - 7 : 1 5 ~}$							
$\mathbf{7 : 1 5 - 8 : 4 5}$							

To do
ubjects covered this half term

Reflect Like a Beckfooter

As Knowledgeable and Expert Learners, we are great at being reflective. We ask ourselves lots of questions before, during and after a task, not just at the end! This helps us to make good choices about what we need to do, and the best way to do it. It also helps us to stay motivated, even when things get tough. Finally, it helps to make sure we always complete learning tasks to the very best of our ability.

Before a fask, ask yourself:

Comprehension

What is this task about? What do I understand about it?

What am I being asked to do?
Connection
What do I already know about this?
Have I seen anything like this before?
How is this similar or different to other tasks I have done?

Strategy

Do I know any strategies that would be appropriate for this task?

Which strategy would be most helpful to me now? Have I used this strategy before?
Was it successful?
How can I ensure I am successful this time?

After a task, ask yourself:

Reflection (after the task)
Does my finished work look successful?
Does it make sense? How do l know?
Could I have done this a different way?
Is this work better than I have done in the past?
How do I know?
How did my motivation level affect my performance in the task?

What emotions did I experience during the task? Why?
How can I motivate myself in a different way in the future? Explain

[^0]: Human genome project:

 - Study of the whole human genome

 Importance of this project:

 - Search for genes linked to different types of disease
 - Understanding and treatment of inherited disorders
 - Use in tracing human migration patterns from the past.

[^1]: Additional Information: The process of Genetic Engineering, The process of Selective Breeding, The process of Antibiotic resistance

[^2]: Remember: not every text has implied meaning.
 In English there will be lots, but there will be very little in many Science and Maths texts.

