Name:

Example Year 1 AS Chemistry

Exam Questions and Mark Scheme
Class:

Date:

Time:

60 minutes

Marks: 56 marks

Comments:

1. (a) Nickel is a metal with a high melting point.
(i) State the block in the Periodic Table that contains nickel.
\qquad
(ii) Explain, in terms of its structure and bonding, why nickel has a high melting point.
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Draw a labelled diagram to show the arrangement of particles in a crystal of nickel. In your answer, include at least six particles of each type.
(iv) Explain why nickel is ductile (can be stretched into wires).
\qquad
\qquad
\qquad
(b) Nickel forms the compound nickel(II) chloride $\left(\mathrm{NiCl}_{2}\right)$.
(i) Give the full electron configuration of the Ni^{2+} ion.
\qquad
(ii) Balance the following equation to show how anhydrous nickel(II) chloride can be obtained from the hydrated salt using SOCl_{2} Identify one substance that could react with both gaseous products.
$\ldots . . . \mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})+\ldots . . . \mathrm{SOCl}_{2}(\mathrm{~g}) \longrightarrow \ldots . . \mathrm{NiCl}_{2}(\mathrm{~s})+\ldots \ldots . \mathrm{SO}_{2}(\mathrm{~g})+\ldots . . \mathrm{HCl}(\mathrm{g})$

Substance \qquad
2. What is the best oxidising agent?

A F_{2}

B F^{-}

C $\quad \mathrm{I}_{2}$

D ${ }^{-}$
\bigcirc
(Total 1 mark)
3. Which statement is correct about reactions involving halide ions?

A Sodium chloride forms chlorine when added to concentrated sulfuric acid.

B Sodium chloride forms chlorine when added to bromine.

C Sodium bromide forms bromine when added to concentrated
 sulfuric acid.

D Sodium bromide forms bromine when added to iodine. \square
(Total 1 mark)
4. Time of flight (TOF) mass spectrometry can be used to analyse large molecules such as the pentapeptide, leucine encephalin (\mathbf{P}).
\mathbf{P} is ionised by electrospray ionisation and its mass spectrum is shown in the diagram.

(a) Describe the process of electrospray ionisation.

Give an equation to represent the ionisation of \mathbf{P} in this process.
Description \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Equation
\qquad
(b) What is the relative molecular mass of \mathbf{P} ?

Tick (\checkmark) one one box.
555

556

557

(c) A molecule \mathbf{Q} is ionised by electron impact in a TOF mass spectrometer.

The \mathbf{Q}^{+}ion has a kinetic energy of $2.09 \times 10^{-15} \mathrm{~J}$
This ion takes $1.23 \times 10^{-5} \mathrm{~s}$ to reach the detector.
The length of the flight tube is 1.50 m
Calculate the relative molecular mass of \mathbf{Q}.
$K E=\frac{1}{2} m v^{2}$ where $m=\operatorname{mass}(\mathrm{kg})$ and $v=$ speed $\left(\mathrm{m} \mathrm{s}^{-1}\right)$
The Avogadro constant, $L=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

Relative molecular mass \qquad
5. This question is about fossil fuels.
(a) The petrol fraction from crude oil contains octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$.

Give an equation for the complete combustion of octane.
\qquad
(b) The combustion of petrol in car engines produces the pollutant nitrogen monoxide.

Give an equation for a reaction that removes nitrogen monoxide in a catalytic converter.
(c) Sulfur dioxide is produced in the combustion of fossil fuels. The total emissions of sulfur dioxide in the UK have fallen dramatically since 1970.

Sulfur dioxide is now removed from the flue gases in power stations by reaction with calcium oxide.

$$
\mathrm{CaO}+\mathrm{SO}_{2} \rightarrow \mathrm{CaSO}_{3}
$$

In 1970, the total UK emissions of sulfur dioxide were 6.49 million tonnes (1 tonne $=1000 \mathrm{~kg}$).

Calculate the mass, in kilograms, of calcium oxide needed to react with this mass of sulfur dioxide.

Give your answer in standard form.
\qquad kg
6. Propene reacts with concentrated sulfuric acid to form two isomers, E and F. The structure of \mathbf{E} is shown.

(a) Name and outline the mechanism for the formation of \mathbf{E} in this reaction.

Name of mechanism
Mechanism
(b) Draw the structure of F .
(c) Explain why more of isomer \mathbf{E} than isomer \mathbf{F} is formed in this reaction.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 8 marks)
7. Magnesium exists as three isotopes: ${ }^{24} \mathrm{Mg},{ }^{25} \mathrm{Mg}$ and ${ }^{26} \mathrm{Mg}$
(a) In terms of sub-atomic particles, state the difference between the three isotopes of magnesium.
\qquad
\qquad
\qquad
(b) State how, if at all, the chemical properties of these isotopes differ.

Give a reason for your answer.
Chemical properties \qquad

Reason \qquad
\qquad
\qquad
(c) ${ }^{25} \mathrm{Mg}$ atoms make up 10.0% by mass in a sample of magnesium.

Magnesium has $A_{r}=24.3$
Use this information to deduce the percentages of the other two magnesium isotopes present in the sample.

$$
{ }^{24} \mathrm{Mg} \text { percentage }=\ldots \quad \% \quad{ }^{26} \mathrm{Mg} \text { percentage }=\ldots \quad \%
$$

(d) In a TOF mass spectrometer, ions are accelerated to the same kinetic energy (KE).

$$
\begin{array}{ll}
\mathrm{KE}=\frac{1}{2} m v^{2} & \text { where } m=\text { mass }(\mathrm{kg}) \text { and } v=\text { velocity }\left(\mathrm{m} \mathrm{~s}^{-1}\right) \\
v=\frac{d}{t} & \text { where } d=\text { distance }(\mathrm{m}) \text { and } t=\text { time }(\mathrm{s})
\end{array}
$$

In a TOF mass spectrometer, each ${ }^{25} \mathrm{Mg}^{+}$ion is accelerated to a kinetic energy of $4.52 \times 10^{-16} \mathrm{~J}$ and the time of flight is $1.44 \times 10^{-5} \mathrm{~s}$.
Calculate the distance travelled, in metres, in the TOF drift region.
(The Avogadro constant $\mathrm{L}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$)

Distance $=$ \qquad m
8. A sample of hydrated nickel sulfate $\left(\mathrm{NiSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}\right)$ with a mass of 2.287 g was heated to remove all water of crystallisation. The solid remaining had a mass of 1.344 g .
(a) Calculate the value of the integer x.

Show your working.
\qquad
(b) Suggest how a student doing this experiment could check that all the water had been removed.
\qquad
\qquad
\qquad
\qquad
9. This question is about the reactions of magnesium and its compounds.
(a) Magnesium is used in one of the stages in the extraction of titanium.

Give an equation for the reaction between titanium(IV) chloride and magnesium.
State the role of magnesium in this reaction.

Equation

Role of magnesium \qquad
(b) A mixture of magnesium oxide and magnesium hydroxide has a mass of 3200 mg

This mixture is reacted with carbon dioxide to form magnesium carbonate and water. The mass of water produced is 210 mg

$$
\begin{gathered}
\mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{CO}_{2} \rightarrow \mathrm{MgCO}_{3}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{MgO}+\mathrm{CO}_{2} \rightarrow \mathrm{MgCO}_{3}
\end{gathered}
$$

Calculate the percentage by mass of magnesium oxide in this mixture.
\% of magnesium oxide \qquad

1. (a) (i) d (block) OR D (block) Ignore transition metals / series.
Do not allow any numbers in the answer.
(ii) Contains positive (metal) ions or protons or nuclei and delocalised / mobile / free / sea of electrons

Ignore atoms.

Strong attraction between them or strong metallic bonds
Allow 'needs a lot of energy to break / overcome' instead of 'strong'.
If strong attraction between incorrect particles, then $C E=0 / 2$.
If molecules / intermolecular forces / covalent bonding / ionic bonding mentioned then $C E=0$.
(iii)

OR

M1 is for regular arrangement of atoms / ions (min 6 metal particles).
M2 for + sign in each metal atom / ion.
Allow 2^{+}sign.
(iv) Layers / planes / sheets of atoms or ions can slide over one another QoL.
(b) (i) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{8}\left(4 s^{0}\right)$

Only.
(ii) $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}+\mathbf{6} \mathrm{SOCl}_{2} \longrightarrow \mathrm{NiCl}_{2}+\mathbf{6} \mathrm{SO}_{2}+\mathbf{1 2} \mathrm{HCl}$

Allow multiples.
$\mathrm{NaOH} / \mathrm{NH}_{3} / \mathrm{CaCO}_{3} / \mathrm{CaO}$
Allow any name or formula of alkali or base.
Allow water.
2. A
4. (a) M1: P dissolved or put in/added to a solvent

M1: Allow named solvent eg water or methanol

M2: (injected through) a needle or nozzle or capillary and at high voltage/4000 volts or high potential

M2: Allow needle is positively charged

M3: Gains a proton / H^{+}
M3: Not atoms gain a proton
M3: Could be scored from equation

M4: $\mathrm{P}+\mathrm{H}^{+} \rightarrow \mathrm{PH}^{+}$
Correct equation gains M3 and M4
Ignore state symbols
(b) 555
(c) $\quad \mathrm{M} 1 \mathrm{~V}=\mathrm{d} / \mathrm{t}$ or $=1.22 \times 10^{5} \mathrm{~ms}^{-1}$

Recall this equation
$\mathbf{M 2}^{\mathrm{m}}=\frac{2 \mathrm{KE}}{\mathrm{v}^{2}}$ or $\frac{2 \times 2.09 \times 10^{-15}}{\left(1.22 \times 10^{5}\right)^{2}}$
or

$$
\begin{gathered}
\mathbf{M} 2 \mathrm{~m}=\frac{2 \mathrm{KE} \mathrm{x} \mathrm{t}}{}{ }^{2} \text { or } \frac{2 \times 2.09 \times 10^{-15} \times\left(1.23 \times 10^{-5}\right)^{2}}{1.50^{2}} \mathrm{~d}^{2} \\
\text { Rearrangement to give } \mathrm{m}
\end{gathered}
$$

M3 m $=\underline{2.8(1) \times 10^{-25}}(\mathrm{~kg})$
M3: Calculation of m.
$\mathbf{M 4}=2.81 \times 10^{-25} \underline{\mathrm{xL}}=0.169$
M4: Allow M3 $\times L$

M5 $0.169 \times 1000=169 .(2)$
M5: Allow M4 $\times 1000$
169 only scores 5 marks
Allow answers to 2 significant figures or more ignore units
5. (a) $\mathrm{C}_{8} \mathrm{H}_{18}+12.5 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}$

Allow multiples Ignore state symbols
(b) $2 \mathrm{NO}+2 \mathrm{CO} \rightarrow \mathrm{N}_{2}+2 \mathrm{CO}_{2}$ or $25 \mathrm{NO}+\mathrm{C}_{8} \mathrm{H}_{18} \rightarrow 12.5 \mathrm{~N}_{2}+9 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{CO}_{2}$ Allow multiples Ignore state symbols Allow $2 \mathrm{NO} \rightarrow \mathrm{N}_{2}+\mathrm{O}_{2}$ (or multiples)
(c)

M1 moles $\mathrm{SO}_{2}=\frac{6490000 \times 10^{6}}{64.1}\left(=\frac{6.49 \times 10^{12}}{64.1}=1.012 \times 10^{11}\right)$

M2 mass CaO $=\left(\frac{1.012 \times 10^{11} \times 56.1}{1000}\right)=5.68 \times 10^{9}(\mathrm{~kg})$

M2 must be in standard form
Correct answer in standard form scores 2 marks (allow $5.6-5.7 \times 10^{9}$). Answer to at least $2 s f$.
Correct answer in non-standard form scores 1 mark
Answers that are $5.6-5.7 \times 10^{n}$ score 1 mark
For other answers, allow ECF from M1 to M2 (but answer must be in standard form for M2 to score)

Alternative

M1 mass $\mathrm{CaO}=\frac{6490000 \times 10^{6}}{64.1} \times 56.1$
$=5.68$ million tonnes
M2 $5.68 \times 10^{9}(\mathrm{~kg})$
(7.4.. $\times 10^{9}$ would score 1 mark due to use of $\frac{64.1}{56.1}$)
6.
(a) M1 electrophilic addition

All arrows are double-headed. Penalise one mark from the total for M2-5 if half headed arrows are used.
Do not penalise the "correct" use of "sticks"
Penalise only once in any part of the mechanism for a line and two dots to show a bond

M2 must show an arrow from the double bond towards the H atom of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ molecule

For M2/3, the full structure of $\mathrm{H}_{2} \mathrm{SO}_{4}$ does not need to be shown, but the key features for the mechanism should be shown and the formula must be correct. Penalise only once in M2/3 an incorrect but genuine attempt at the structure of sulfuric acid
M2 ignore partial negative charges on the double bond

M3 must show the breaking of the $\mathrm{H}-\mathrm{O}$ bond in $\mathrm{H}_{2} \mathrm{SO}_{4}$
M3 penalise incorrect partial charges on the $\mathrm{H}-\mathrm{O}$ bond and penalise formal charges

M4 is for the structure of the correct carbocation
Penalise M4 if there is a bond drawn to the positive charge

M5 must show an arrow from the lone pair of electrons on the negatively charged oxygen of HSO_{4}^{-}towards the positively charged atom of their carbocation drawn

Max 3 of 4 marks (M2-5) for wrong organic reactant or wrong carbocation (ignore structure of product)

If attack is shown from $\mathrm{C}=\mathrm{C}$ to H^{+}rather than $\mathrm{H}_{2} \mathrm{SO}_{4}$, then allow M2 but not M3
For M5, credit attack on a partially positively charged carbocation structure, but penalise M4 for the structure of the carbocation.
For M5, the full structure of HSO_{4}^{-}is not essential, but attack must come from a lone pair on an individual oxygen on HSO_{4}^{-}, but the - sign could
by anywhere on the ion (e.g.: $\mathrm{OSO}_{3} \mathrm{H}^{-}$)
(b)

or

Any correct structural formula, including $\mathrm{OSO}_{3} \mathrm{H}$ bonded through O to correct C
(c) M1 idea that \mathbf{E} is formed from/via more stable carbocation

M1-2 Allow carbonium ion in place of carbocation

M2 idea that 2^{y} carbocation is more stable than 1^{y} carbocation
M2 Allow descriptions in terms of number of alkyl groups attached to positive C atom

Ignore reference to inductive effect
Penalise M1 if answer suggests that the products are carbocations (but could score M2)
In order to access M1 and/or M2 there must be some reference to carbocations (carbonium ions) by name or structure or description
7. (a) ${ }^{24} \mathrm{Mg}$ has $12 \mathrm{n} ;{ }^{25} \mathrm{Mg}$ has $13 \mathrm{n} ;{ }^{26} \mathrm{Mg}$ has 14 n

OR They have different numbers of neutrons

Because all have the same electronic structure (configuration)
OR they have the same number of outer electrons
(b) No difference in chemical properties
(c) If fraction with mass $24=x$

Fraction with mass $26=0.900-x$
Fraction with mass $25=0.100$
$A_{\mathrm{r}}=24 \mathrm{x}+(25 \times 0.100)+26(0.900-\mathrm{x})$
$24.3=24 x+2.50+23.4-26 x$
$2 \mathrm{x}=1.60$
$x=0.800$ i.e. percentage ${ }^{24} \mathrm{Mg}=80.0(\%)(80.0 \% 3 \mathrm{sf})$
${ }^{26} \mathrm{Mg}=0.900-0.800=0.100$ ie percentage ${ }^{26} \mathrm{Mg}=10.0(\%)$
(d) $m=25 / 1000 / 6.022 \times 10^{23}$
$v^{2}=2 k e / m$ or $v^{2}=\frac{2 \times\left(4.52 \times 10^{-16}\right) \times\left(6.022 \times 10^{23}\right)}{25 / 1000}$
$V=\sqrt{2.18 \times 10^{10}}=1.48 \times 10^{5}\left(\mathrm{~ms}^{-1}\right)$
$D=v t=1.48 \times 10^{5} \times 1.44 \times 10^{-5}$
$\mathrm{D}=2.13(\mathrm{~m})$
[11]
8. (a) 0.943 g water (M1)

If Mr of NiSO_{4} wrong, can allow M1 and M3 from method 1 i.e. max 2
$\mathrm{NiSO}_{4} \quad \mathrm{H}_{2} \mathrm{O}$
$\frac{1.344}{154.8}(\mathrm{M} 2) \quad \frac{0.943}{18}(\mathrm{M} 3)$
$\left(8.68 \times 10^{-3} \quad 0.052\right)$
$1 \quad 6 \quad$ or $x=\underline{6} \quad(\mathrm{M} 4)$
Allow Mr = 155
Allow other methods e.g.
$M_{\mathrm{r}}\left(\mathrm{NiSO}_{4}\right)=58.7+32.1+64.0=154.8$
$n\left(\mathrm{NiSO}_{4}\right)=\frac{1.344}{154.8}=0.008682 \mathrm{~mol} \quad(\mathrm{M} 1)$
$M_{\mathrm{r}}\left(\mathrm{NiSO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}\right)=\frac{2.287}{0.008682}=(263.4)(\mathrm{M} 2)$
so $18 x=263.4-154.8=(108.6) \quad(\mathrm{M} 3)$
so $x=\frac{108.6}{18}=\underline{6} \quad(\mathrm{M} 4)$

If using alternative method and Mr of NiSO_{4} wrong, allow ecf to score M2 and M3 only i.e. max 2
(b) re-heat

Heat to constant mass = 2 marks
check that mass is unchanged
M2 dependent on M1
Allow as alternative:
M1: record an IR spectrum
M2: peak between 3230 and $3550\left(\mathrm{~cm}^{-1}\right)$
9. (a) Equation: $2 \mathrm{Mg}+\mathrm{TiCl}_{4} \rightarrow \mathrm{Ti}+2 \mathrm{MgCl}_{2}$

Allow multiples / ignore ss

Role: Reducing agent
Allow electron donor (not electron pair donor)
(b) M1: moles of water in $210 \mathrm{mg}=$ mass $/ \mathrm{mr}=0.210 / 18$

$$
=\underline{0.0117} \mathrm{~mol} \text { ONLY }
$$

Equal to moles of magnesium hydroxide produced in stage one
M2: mass of $\mathrm{Mg}(\mathrm{OH})_{2}=0.0117 \times 58.3=0.680 \mathrm{~g}$
M3: mass of MgO $=3.2-0.68$

$$
=2.52 \mathrm{~g}
$$

M1 = moles of water
$\mathbf{M 2}=$ mass of $\mathrm{Mg}(\mathrm{OH})_{2}=\mathbf{M 1} \times 58.3$
M3 $=$ subtraction $=3.2$ - M2
M4 = answer to M3 x 100/3.2
Accept correct alternative methods such as
M1 = moles of water
$\mathbf{M 2}=$ mass of $\mathrm{Mg}(\mathrm{OH})_{2}=\mathbf{M 1} \times 58.3$
M3 = M2 x 100/3.2
M4 = $\mathbf{1 0 0} \mathbf{- M 3}$
M4: \% of $\mathrm{MgO}=2.52 / 3.2 \times 100=78.7 \%$
M4: Allow 78.7 - 78.8 or 79 \%

