

Subject: A-level Physics

Topic: Magnetic Fields

Year Group: 13

Ι	Faraday's Law	The induced EMF is equal to the rate if change of flux linkage		
2	Lenz's Law The curr opp		e direction of the induced rent is always such as to pose the change that caused it	
A	lternating cu	rrer	its	
I	An oscilloscope can be used to measure the time- intervals and frequencies of AC waveforms		Vots City A	
2	Converting between peak-to- peak values and rms values		$I_{\rm rms} = \frac{I_0}{\sqrt{2}}; V_{\rm rms} = \frac{V_0}{\sqrt{2}}$	
3	Transformers rely on AC input to produce AC output		induces a magnetic field in soft iron core urrent through coil owww.science ald.net	
4	Step-up and step- down transformers		$\frac{N_{\rm s}}{N_{\rm p}} = \frac{V_{\rm s}}{V_{\rm p}}$	
5	Transformers lose energy due to heating effects of eddy currents. This can be reduced by using (1) low resistance windings and (2) a laminated core			

De	Definitions				
I	Magnetic flux density	The magnetic flux is the number of lines of force passing through a unit area of material, B. The unit is the tesla (T).			
2	Magnetic flux	Defined as Φ = BA where B is at right angles to A			
3	Magnetic Flux linkage	Defined as NΦ where N is number of turns of wire cutting the flux			

K	Key equations		
I	Force on a current carrying wire	F = BIl	
2	Force on a moving particle at right angles to the field	F = BQv	
3	Flux linkage	$N\Phi = BAN\cos\theta$	
4	Magnitude of induced EMF	$\varepsilon = N \frac{\Delta \Phi}{\Delta t}$	
5	EMF induced in a rotating coil	$\varepsilon = BAN\omega \sin \omega t$	
6	Transformer efficiency	$= \frac{I_{\rm S}V_{\rm S}}{I_{\rm P}V_{\rm P}}$	

