Subject :	Computer Science]	Year Group:	10		
	June - July	September to October	October - December	December - February	February - April	April - June
Scheme title	Fundamentals of Algorithms	Fundamentals of Programming	Fundamentals of Programming	Fundamentals of Data Representation	Fundamentals of Computer Systems	Non Exam Assessment
Purpose of Scheme	A high-quality Computer Science education ensures	A high-quality Computer Science education ensures				
	all students:	all students:				
	 are prepared for the future giving them 	 are prepared for the future giving them 	 are prepared for the future giving them 	 are prepared for the future giving them 	 are prepared for the future giving them 	• are prepared for the future giving them
	opportunities to gain knowledge and develop skills	opportunities to gain knowledge and develop skills				
-	for the ever changing digital world.	for the ever changing digital world.				
Knowledge in	Fundamentals of Algorithms	Fundamentals of Programming	Fundamentals of Programming	Fundamentals of Data Representation	Fundamentals of Computer Systems	Non Exam Assessment
sequence	3.1.1 Representing algorithms	3.2.1 Data types	3.2.8 String handling operations in a programming	3.3.1 Number bases	3.4.1 Hardware and Software	3.9.1.1 Purpose of non-exam assessment
	3.1.2 Efficiency of algorithms	3.2.2 Programming concepts	language	3.3.2 Converting between number bases	3.4.2 Boolean logic	Non-exam assessment (NEA) al-lows students to
	3.1.3 Searching algorithms	3.2.3 Arithmetic operations in a programming	3.2.9 Random number generation in a programming	3.3.3 Units of information	3.4.3 Software classification	develop their practical skills in a problem-solving
	3.1.4 Sorting algorithms	language	language	3.3.4 Binary arithmetic	3.4.4 Systems architecture	context by coding a solu-tion to a given problem. Non-
		3.2.4/5 Relational/Boolean operations in a	3.2.10 Subroutines (procedures and functions)	3.3.5 Character encoding		exam assessment is as much a learning experience as it
		programming language	3.2.11 Structured programming	3.3.6 Representing images		is a method of assessment: allowing students to work
		3.2.6 Data structures	3.2.12 Robust and secure programming	3.3.7 Representing sound		independently, over a period of time, extending their
		3.2.7 Input/output and file handling	3.2.13 Classification of pro-gramming languages	3.3.8 Data compression		programming skills and increasing their understanding
		3.2.8 String handling operations in a programming		· · · · · · · · · · · · · · · · · · ·		of practical, real world applica-tions of computer
		language				science
		3.2.9 Random number generation in a programming				Section.
		language				
Skills	Algorithmic Thinking is thinking like a computer in a	Algorithmic Thinking is thinking like a computer in a	Algorithmic Thinking is thinking like a computer in a	Decomposition is the process of breaking down a task	Algorithmic Thinking is thinking like a computer in a	Algorithmic Thinking is thinking like a computer in a
	sequence of instructions or a set of rules to get	sequence of instructions or a set of rules to get	sequence of instructions or a set of rules to get	into smaller more manageable parts	sequence of instructions or a set of rules to get	sequence of instructions or a set of rules to get
	something done.	something done.	something done.		something done.	something done.
				Abstraction is about simplifying things identifying		
	Decomposition is the process of breaking down a task	Decomposition is the process of breaking down a task	Decomposition is the process of breaking down a task	what's im-nortant without worrying too much about	Logical reasoning beins us ex-plain why something	Logical reasoning beins us ex-plain why something
	into smaller more manageable parts	into smaller more manageable parts	into smaller more manageable parts	detail	hannens	hannens
	into smaller more manageable parts.	into smaller more manageable parts.	into smaller more manageable parts.	detail	парренз.	nappens.
	Abstraction is about simplifying things identifying	Abstraction is about simplifying things identifying	Abstraction is about simplifying things identifying		Decomposition is the process of breaking down a task	Decomposition is the process of breaking down a task
	Abstraction is about simplifying things identifying	Abstraction is about simplifying things identifying	Abstraction is about simplifying times identifying		becomposition is the process of breaking down a task	becomposition is the process of breaking down a task
	what sim-portant without worrying too much about	what s im-portant without worrying too much about	what's im-portant without worrying too much about		into smaller more manageable parts.	into smaller more manageable parts.
	detail	detail.	detail.			
					Abstraction is about simplifying things identifying	Abstraction is about simplifying things identifying
		Programming is the process of designing and writing a	Programming is the process of designing and writing a		what s im-portant without worrying too much about	what's im-portant without worrying too much about
		set of instructions for a computer in a language it can	set of instructions for a computer in a language it can		detail.	detail.
		understand	understand			Evaluation is about making judgements, where possible
						is an objective and systemic way.
		100,000,000	*D + T			
Key words	Flowcharts, Pseudocode, Linear Search, Binary Search,	KEY IERWIS	*Data Types	Number Bases, Conversion between bases, Unit of	Hardware, CPU architecture, KAM KOM, Virtual	Data Types, Basic Programming, Advanced
	Bubble Sort, Merge Sort, Comparison and effectiveness	*Data Types	*Basic Programming	information, Binary adding, Binary shifting, Character	Memory, Secondary storage, Unline storage, Software,	Programming, Data Structures, File Handling,
		*Basic Programming	*Advanced Programming	sets, Images, Sound, Compression	Embedded systems, Boolean logic	Subroutines
		*Advanced Programming	*Data Structures			
		*Data Structures	*File Handling			
		*File Handling	*Subroutines			
		*Subroutines	*Classification of Languages			
End Point	Students are able to write their own step by step	Students are able to solve a variety of computational	Students are able to solve a variety of computational	Students are able to convert 8-bit binary numbers into	Students developed a good understanding of hardware	NEA Completion
	algortihms for a given problem. They can write in	problems and can successfully debug their code. They	problems and can successfully debug their code. They	denary and vice versa. Students understand data can	components and are able to understand simple	
	pseudocode and create flowcharts. They will also be	will also be able to answer GCSE exam style questions.	will also be able to answer GCSE exam style questions.	be represented and manipulated digitally in the form	noolean logic for example AND OR and NOT. They will	
	able to answer GCSE exam style questions.			of binary digits. They will also be able to answer GCSE	also be able to answer GCSE exam style questions.	
				evam style questions		
				example questions.		
Assessment	Final Written Assessment:	Final Written Assessment:	*Final Written Assessment:	Final Written Assessment:	Final Written Assessment:	*20 hour NEA
method	*Algorithms exam 60 marks	*Programming exam 60 marks	*Data Representation exam 60 marks	*Data Representation exam 60 marks	*Computer Systems exam 60 marks	Sample sent to AQA in May every year
		1				1
	*Mid unit assessment	1				
	Reflection grids x 2	Reflection grids x 2	*Reflection grids x 2	*Reflection grids x 2	*Reflection grids x 2	1
	1			1	1	