
Subject : Computer Science Year Group: 10

June - July September to October October - December December - February February - April April - June

Scheme title Fundamentals of Algorithms Fundamentals of Programming Fundamentals of Programming Fundamentals of Data Representation Fundamentals of Computer Systems Non Exam Assessment

Purpose of Scheme A high-quality Computer Science education ensures

all students:

•	are prepared for the future giving them

opportunities to gain knowledge and develop skills

for the ever changing digital world.

A high-quality Computer Science education ensures

all students:

•	are prepared for the future giving them

opportunities to gain knowledge and develop skills

for the ever changing digital world.

A high-quality Computer Science education ensures

all students:

•	are prepared for the future giving them

opportunities to gain knowledge and develop skills

for the ever changing digital world.

A high-quality Computer Science education ensures

all students:

•	are prepared for the future giving them

opportunities to gain knowledge and develop skills

for the ever changing digital world.

 A high-quality Computer Science education ensures

all students:

•	are prepared for the future giving them

opportunities to gain knowledge and develop skills

for the ever changing digital world.

A high-quality Computer Science education ensures

all students:

•	are prepared for the future giving them

opportunities to gain knowledge and develop skills

for the ever changing digital world.

Knowledge in

sequence

Fundamentals of Algorithms

3.1.1 Representing algorithms

3.1.2 Efficiency of algorithms

3.1.3 Searching algorithms

3.1.4 Sorting algorithms

Fundamentals of Programming

3.2.1 Data types

3.2.2 Programming concepts

3.2.3 Arithmetic operations in a programming

language

3.2.4/5 Relational/Boolean operations in a

programming language

3.2.6 Data structures

3.2.7 Input/output and file handling

3.2.8 String handling operations in a programming

language

3.2.9 Random number generation in a programming

language

Fundamentals of Programming

3.2.8 String handling operations in a programming

language

3.2.9 Random number generation in a programming

language

3.2.10 Subroutines (procedures and functions)

3.2.11 Structured programming

3.2.12 Robust and secure programming

3.2.13 Classification of pro-gramming languages

Fundamentals of Data Representation

3.3.1 Number bases

3.3.2 Converting between number bases

3.3.3 Units of information

3.3.4 Binary arithmetic

3.3.5 Character encoding

3.3.6 Representing images

3.3.7 Representing sound

3.3.8 Data compression

Fundamentals of Computer Systems

3.4.1 Hardware and Software

3.4.2 Boolean logic

3.4.3 Software classification

3.4.4 Systems architecture

Non Exam Assessment

3.9.1.1 Purpose of non-exam assessment

Non-exam assessment (NEA) al-lows students to

develop their practical skills in a problem-solving

context by coding a solu-tion to a given problem. Non-

exam assessment is as much a learning experience as it

is a method of assessment: allowing students to work

independently, over a period of time, extending their

programming skills and increasing their understanding

of practical, real world applica-tions of computer

science.

Skills Algorithmic Thinking is thinking like a computer in a

sequence of instructions or a set of rules to get

something done.

Decomposition is the process of breaking down a task

into smaller more manageable parts.

Abstraction is about simplifying things identifying

what’s im-portant without worrying too much about

detail

Algorithmic Thinking is thinking like a computer in a

sequence of instructions or a set of rules to get

something done.

Decomposition is the process of breaking down a task

into smaller more manageable parts.

Abstraction is about simplifying things identifying

what’s im-portant without worrying too much about

detail.

Programming is the process of designing and writing a

set of instructions for a computer in a language it can

understand

Algorithmic Thinking is thinking like a computer in a

sequence of instructions or a set of rules to get

something done.

Decomposition is the process of breaking down a task

into smaller more manageable parts.

Abstraction is about simplifying things identifying

what’s im-portant without worrying too much about

detail.

Programming is the process of designing and writing a

set of instructions for a computer in a language it can

understand

Decomposition is the process of breaking down a task

into smaller more manageable parts.

Abstraction is about simplifying things identifying

what’s im-portant without worrying too much about

detail

Algorithmic Thinking is thinking like a computer in a

sequence of instructions or a set of rules to get

something done.

Logical reasoning helps us ex-plain why something

happens.

Decomposition is the process of breaking down a task

into smaller more manageable parts.

Abstraction is about simplifying things identifying

what’s im-portant without worrying too much about

detail.

Algorithmic Thinking is thinking like a computer in a

sequence of instructions or a set of rules to get

something done.

Logical reasoning helps us ex-plain why something

happens.

Decomposition is the process of breaking down a task

into smaller more manageable parts.

Abstraction is about simplifying things identifying

what’s im-portant without worrying too much about

detail.

Evaluation is about making judgements, where possible

is an objective and systemic way.

Key Words Flowcharts, Pseudocode, Linear Search, Binary Search,

Bubble Sort, Merge Sort, Comparison and effectiveness

KEYTERMS

*	Data Types

*	Basic Programming

*	Advanced Programming

*	Data Structures

*	File Handling

*	Subroutines

*	Data Types

*	Basic Programming

*	Advanced Programming

*	Data Structures

*	File Handling

*	Subroutines

*	Classification of Languages

Number Bases, Conversion between bases, Unit of

information, Binary adding, Binary shifting, Character

sets, Images, Sound, Compression

Hardware, CPU architecture, RAM ROM, Virtual

Memory, Secondary storage, Online storage, Software,

Embedded systems, Boolean logic

Data Types, Basic Programming, Advanced

Programming, Data Structures, File Handling,

Subroutines

End Point Students are able to write their own step by step

algortihms for a given problem. They can write in

pseudocode and create flowcharts. They will also be

able to answer GCSE exam style questions.

Students are able to solve a variety of computational

problems and can successfully debug their code. They

will also be able to answer GCSE exam style questions.

Students are able to solve a variety of computational

problems and can successfully debug their code. They

will also be able to answer GCSE exam style questions.

Students are able to convert 8-bit binary numbers into

denary and vice versa. Students understand data can

be represented and manipulated digitally in the form

of binary digits. They will also be able to answer GCSE

exam style questions.

Students developed a good understanding of hardware

components and are able to understand simple

noolean logic for example AND OR and NOT. They will

also be able to answer GCSE exam style questions.

NEA Completion

Assessment

method

Final Written Assessment:

*	Algorithms exam 60 marks

*	Mid unit assessment

Reflection grids x 2

Final Written Assessment:

*	Programming exam 60 marks

*	Mid unit assessment

Reflection grids x 2

*	Final Written Assessment:

*	Data Representation exam 60 marks

*	Mid unit assessment

*	Reflection grids x 2

Final Written Assessment:

*	Data Representation exam 60 marks

*	Mid unit assessment

*	Reflection grids x 2

Final Written Assessment:

*	Computer Systems exam 60 marks

*	Mid unit assessment

*	Reflection grids x 2

*	20 hour NEA

Sample sent to AQA in May every year

