

Subject: A-level Physics

Topic: Materials

Year Group: 12

Be	eckfoot	ject	A-level Physics			
Springs					Key equati	
I	,		asures a materials resistance to nstant, the stiffer the material.	I	Density (k	
2	Gradient of a force-extension graph =		= stiffness constant.	2	Stiffness/s constant (
3	A stretched spring stores energy called elastic strain energy. The amount of energy stored is equal to the work done when stretching the spring.			3	Energy sto	
4		rgy = area under a force-extension graph.		4	Young mo (Pa)	
5	the internal energy of the ob				Young mod	
6	F-∆L graph for loading and unloading a rubber band	loading	one in stretching = area under urve. rain energy recovered = area	I	lt is a mea	
	Laing Damas	below unloading curve. The shaded area is the energy transferred to the rubber as internal energy.		2	lt is given	
St	ress-strain graphs		tensile stress (Nm ⁻²)			
I	UTS breaking point tensile strain		Ductile material – e.g. copper. Maintain their shape when stretched beyond their elastic limit.		tensil	
				Yc	oung moo	
2	UTS breaking point	nt	Brittle material – e.g. glass. Have a linear stress- strain graph until they fracture. They do not undergo any plastic		Use this s	
3	tensile strain	pint	deformation. Polymeric material – e.g. rubber. Materials made of polymers. They do not have a linear stress-strain graph.	2	Measure d calculate th Apply diffe determine original wi Determine force. Plot a stre	

Key equations						
Ι	Density (kgm ⁻³)	$ ho = rac{m}{V}$				
2	Stiffness/spring constant (Nm ⁻¹)	$k = \frac{F}{\Delta L}$				
3	Energy stored (J)	$E = \frac{1}{2}F\Delta L$				
4	Young modulus (Pa)	$E = \frac{\text{tensile stress}}{\text{tensile strain}} = \frac{FL}{A\Delta L}$				
Young modulus						
Ι	It is a measure of the stiffness of a material.					
2	It is given by the gradient of a stress-strain curve. Stress-strain graphs elastic deformation elastic deformation yield point UTS breaking point tensile strain					
Young modulus required practical						
Ι	Use this set-up.	← length of wire under test → ruler marker on wire				
2	Measure diameter of wire using a micrometre then calculate the cross-sectional area. Apply different forces to the wire and for each force determine the extension of the wire by subtracting the original wire length from the new length. Determine the stress (F/A) and strain (Δl/l) for each force. Plot a stress-strain graph. Gradient=young modulus.					

_			SUCCO			
	Key Vocabularly					
	I	Density	Defined as mass divided by volume.			
	2	Hooke's law	The extension of a spring, Δl, is directly proportional to the force applied (up to the limit of proportionality).			
	3	Elastic limit	The point beyond which a material will no longer return to its original size when the force is removed.			
	4	Limit of proportionality	The point beyond which the material no longer obeys Hooke's law.			
	5	Tensile stress	The stretching force applied per unit cross-sectional area.			
	6	Tensile strain	Extension divided by original length.			
	7	Elastic strain energy	The energy stored in an elastic material that has been stretched.			
	8	Breaking stress	The largest tensile stress that can be applied to a material before it breaks.			
_	9	Elastic material	Materials that return to their original length once the force is removed.			
	10	Plastic material	Materials that remain deformed once the force is removed.			
	11	Brittle	Materials that show very little plastic deformation before breaking.			
	12	Ductile	Materials that have large plastic deformations before breaking (can be drawn into wires).			
	13	Young modulus	Young modulus = tensile stress / tensile strain.			