

Be	eckfoot 🖳			_			_				
Circuit symbols				Circuit basics				Key equations			
I	_+ ⊢ cell	8	o switch (open)		Ι	Series circuits have one loop. Parallel circuits have two or more loops.	I	Current		$I = \frac{Q}{t}$	
2	batter	y 9	switch (closed)		2	2 Conventional current flows from positive to negative BUT the electrons actually move from negative to positive.		Potential difference		$V = \frac{W}{Q}$	
3	—————— lamp	10			3	Resistance is caused by collisions between the charge carriers in the material with each other and the fixed positive ions in the material through which the current is flowing.		Potential difference		V = IR	
4	fuse	fuse II variable resistor			I-'	V graph practical		Power		$P = IV = I^2 R = \frac{V^2}{R}$	
5	- diode	diode I2		This is the set-up needed to collect the results for a filement + -	5	Energy		$E = Pt = IVt = I^2Rt = \frac{V^2t}{R}$			
6 7				6	Efficiency		$= \frac{useful \ energy \ output}{total \ energy \ input} \times 100$ $= \frac{useful \ power \ output}{useful \ power \ input} \times 100$				
Current-Voltage graphs							KeyVocabulary				
I		Resistor at a constant temperature $V \propto V$		3	2	Repeat for at least 6 different I and V values.		Current	The rate of flow of charge.		
	Voltage Obeys Ohm's law. Is an ohmic conductor.		4 To obtain negative readings, reverse the connections to the power supply.				2 Potential difference		he work done in moving a unit charge etween two points.		
2	Current Filament lamp: As the / increases the filament heats up meaning R increases. This				You can determine the resistance from an I-V graph by doing R = I/gradient. Or if voltage is on y-axis and current on x-axis R = gradient.		(voltage) Resistance	The ra	atio of the potential difference d across a component to the		
	Voltage t	Voltage is because the energy transfer increating the lattice vibrations, leading to more			Т	hermistors and LDRs		curre	nt passing through it.		
		frequent collisions between the e ⁻ and lattice ions.			I	Thermistors and LDRs are made from semiconductors which are materials with a limited number of charge carriers.		Ohm's law	law Provided that the temperature and oth physical conditions remain the same, th current through a conductor is directly		
3 Current /		Diode: Forward bias - R is initially very high, resulting in a small <i>I</i> . At about 0.7 V			2	As semiconductors are supplied with energy electrons can gain enough energy to become free to move through the material.			propo acros	ortional to the potential difference s it.	
	Voltage	the R rapidly decreases meaning <i>l</i> increases rapidly. Reverse bias - R is very high, giving almost			3	Thermistors (NTC) are devices whose resistance drops at temperature increases.	5	Power	The ra	te of energy transfer.	
	zero current until the breakdown current after which $R \sim 0$ leading to large <i>I</i> .			4	LDRs are devices whose resistance drops as light intensity increases.	6	Efficiency	Measu a devid	res how much of the energy supplied to e is used usefully.		

Subject: A-level Physics

Topic: Electricity

Year Group: 12

Resistivity				Kirchoff's laws			Key equations		
I	It depends on the material structure as well as environmental factors e.g. light and temperature. It is measured in Ω m. Good conductors have small resistivities.		I Kirchoff's first law (conservation of charge):		h ₁ h	Ι	Resistivity	$\rho = \frac{RA}{l}$	
2				At any junction in a circuit, the total		2		$(d)^2 \pi d^2$	
3	Required practical: Determining the	0-evoc		total current entering the junction.	$l_{1} = l_{1} + l_{2} = l_{3} + l_{4} + l_{5}$		cross-sectional area	$A = \pi r^2 = \pi \left(\frac{\pi}{2}\right) = \frac{\pi \pi}{4}$	
	resistivity of a wire	crocodile clip	2	This means that in a series circuit the current must be the same everywhere as current does not get used up.		3	Resistors in series	$R_T = R_1 + R_2 + R_3 + \cdots$	
4	Measure the diameter of the wire using a micrometer.		3	Kirchoff's second law (conservation of energy): The sum of the potential differences around a circuit is equal to the sum of the emfs of the power source.		4	Resistors in parallel	$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$	
	Set length = 0.100 m using a ruler. Set V = $0.5V$ and measure current. Calculate R using R = V/I.		4	4 This means that in a series circuit the pd across components add up to the emf of the power source.		5	Electromotive force	$\epsilon = I(R+r)$	
Plot a graph of R against length. The gradient is R/I, meaning resistivity is given by gradient x A.			5	5 In parallel circuits the pd across parallel components is equal		6	Potential divider	$\frac{V_{out}}{V_{in}} = \frac{R_1}{R_1 + R_2}$	

In	ternal resistance	e and emf	Potential dividers						
I	When no current flows the voltmeter reads 1.5 V. When a current flows the voltmeter reads 1.3 V.		Ι	This is a simple potential divider. The power supply provides a fixed potential difference, V _{in} . BUT we don't want all this potential difference for our appliance. We use two resistors to get the output potential difference we need, V _{out} .					
2	The missing volts are lost across the internal resistance (r) of the power		2		By altering R ₁ and/or R ₂ we can alter the output voltage. By replacing on of the fixed resistors with a varia resistor you can vary V _{out} .				
	suppiy.	R	3	V. Thomaster V. R. V.	Here a resistor has been r The output voltage depend You could use a LDR inste on light intensity.	replaced with a thermis ds on temperature. ead meaning V _{out} deper			
4	When current flows thro with ions in the cell, trans internal resistance of the	ugh a power source electrons collide ferring some energy by heating the cell.	4	A potentiomete	tiometer has a variable resistor				
5	Emf is the energy transfer coulomb of charge. It is u across the power supply	rred by a power source to each sually less than the voltage measured (V _{term}).		divider. You move a slider or turn a button to adjust the relative sizes of R_1 and R_2 . This is useful when you want to					
6	To measure the emf of a potential difference when	power source measure the terminal there is no current flowing.		change the volt control of stere	L				

	Key Vocabulary							
Ø	I	Resistivity	A measure of how much a particular material resits current flow. It is equal to a material's resistance x cross-sectional area divided by its length.					
ble	2 Kirchoff's first law		At any junction in a circuit, the total current leaving the junction is equal to the total current entering the junction.					
stor.	3	Kirchoff's second law	The sum of the potential differences around a circuit is equal to the sum of the emfs of the power source.					
nds	4	Electromotive force (emf)	The energy transferred by a power source to each coulomb of charge.					
	5	Internal resistance	The resistance between the terminals of a power supply which reduces the terminal pf when a current flows.					
Vev	6	Superconductor	A conductor that has zero resistance at or below a critical temperature.					
	7	Potential divider	A pair of resistors that divide input pd in the ratio of the resistors.					