Uncertainties		
1	In readings	Uncertainty in a reading is no smaller than plus or minus half the smallest division of equipmen the uncertainty would be $\pm 0.5^{\circ} \mathrm{C}$.
		For digital equipment such as a voltmeter the uncertainty is often taken to be the same number of decimal places as the value e.g. 2.4 $\pm 0.01 \mathrm{~V}$.
2	in measurements	For measurements (e.g. ruler measurements) there is an uncertainty of $\pm 0.5 \mathrm{~mm}$ at either end of 1 mm
		If measurements are repeated the uncertainty is given by half the range of the measured values.
3	Percentage uncertainty	$\% \text { uncertainty }=\frac{\text { uncertainty }}{\text { value }} \times 100$

Combining uncertainties		
I	$\mathrm{a}=\mathrm{b}+\mathrm{c}$	$\begin{array}{c}\text { Add the absolute uncertainties } \\ \Delta \mathrm{a}=\Delta \mathrm{b}+\Delta \mathrm{c}\end{array}$
2	$\mathrm{a}=\mathrm{b} \times \mathrm{c}$	$\begin{array}{c}\text { Add percentage uncertainties } \\ \varepsilon \mathrm{a}=\varepsilon \mathrm{b}+\varepsilon \mathrm{c}\end{array}$
3	$\mathrm{a}=\mathrm{b} / \mathrm{c}$	$\begin{array}{c}\text { Add percentage uncertainties } \\ \varepsilon \mathrm{a}=\varepsilon \mathrm{b}+\varepsilon \mathrm{c}\end{array}$
4	$\mathrm{a}=\mathrm{bc}$	

power \\
\varepsilon \mathrm{a}=\mathrm{c} \times \mathrm{b} \mathrm{b}\end{array}\right]\)

Gradients

Key Vocabulary

$\left.\left.\begin{array}{|l|l|l|}\hline \mathbf{I} & \text { Accurate } & \text { Measurements close to the true value. } \\ \hline \mathbf{2} & \text { Random error } & \begin{array}{l}\text { They cause readings to be spread about the } \\ \text { true value due to results varying in an } \\ \text { unpredictable way from one measurement } \\ \text { to another. }\end{array} \\ \hline \mathbf{3} & \begin{array}{l}\text { Systematic } \\ \text { error }\end{array} & \begin{array}{l}\text { They cause measurements to vary by a } \\ \text { consistent amount each time a } \\ \text { measurement is made. }\end{array} \\ \hline \mathbf{4} & \text { Zero error } & \begin{array}{l}\text { Any indication that a measuring system gives } \\ \text { a false reading when the true value of a } \\ \text { measured quantity is zero. May result in a } \\ \text { systematic uncertainty. }\end{array} \\ \hline 5 & \text { Precision } & \begin{array}{l}\text { Precise measurements are ones that have } \\ \text { little spread about the mean value. }\end{array} \\ \hline \mathbf{1 0} & \text { Uncertainty } & \begin{array}{l}\text { The values taken as the difference between } \\ \text { the judgements of two values. E.g. ruler, } \\ \text { Vernier calliper, micrometer, protractor, }\end{array} \\ \text { analogue meter, stop clock. }\end{array} \right\rvert\, \begin{array}{l}\text { The interval within which the true value can } \\ \text { be expected to lie. }\end{array}\right\}$

Key Vocabulary

I	Accurate	Measurements close to the true value.
2	Random error	They cause readings to be spread about the true value due to results varying in an unpredictable way from one measurement to another.
3	Systematic error	They cause measurements to vary by a consistent amount each time a measurement is made.
4	Zero error	Any indication that a measuring system gives a false reading when the true value of a measured quantity is zero. May result in a systematic uncertainty.
5	Precision	Precise measurements are ones that have little spread about the mean value.
	Measurement	The values taken as the difference between the judgements of two values. E.g. ruler, Vernier calliper, micrometer, protractor, analogue meter, stop clock.
	Reading	The value found from a single judgement when using a piece of equipment. E.g. thermometer, top pan balance, measuring cylinder, digital voltmeter.
6	Repeatable	A measurement is repeatable if the original experimenter repeats the investigation using same method and equipment and obtains the same results.
7	Reproducible	A measurement is reproducible if the investigation is repeated by another person, or by using different equipment or techniques, and the same results are obtained.
8	Resolution	This is the smallest change in the quantity being measured (input) of a measuring instrument that gives a perceptible change in the reading.
9	True value	The value that would be obtained in an ideal measurement.
10	Uncertainty	The interval within which the true value can be expected to lie.

