Subject:A-level Physics

Latent heat	
I	When the solid is initially heated the energy supplied causes the temperature of the solid to increase (because the supplied energy causes the particle's average KE to increase).
2	Once the melting point is reached the temperature remains constant even though heat is still being supplied (because energy is breaking bonds between atoms, increasing their average potential energy, rather than their KE).
3	The temperature then rises again until the boiling point is reached. The temperature remains constant until all the liquid has turned to a gas.
4	The internal energy is always increasing. Sometimes it is the kinetic energy that is increasing (shown by an increase in T), sometimes it is the potential energy that is increasing (shown by a change of state).

Key equations

I	Specific heat capacity	$Q=m c \Delta \theta$
2	Latent heat	$Q=m l$
3	Boyle's law	$p_{1} V_{1}=p_{2} V_{2}$
4	Charles' law	$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}$
5	Pressure law	$\frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}}$

Key Vocabulary

I	Internal energy	The sum of the randomly distributed kinetic energy and potential energy of all the particles in a body.
2	Absolute zero	The coldest possible temperature. Atoms have effectively zero kinetic energy.
3	Specific heat capacity	The energy needed to raise the temperature of I $\mathrm{kg} \mathrm{of} \mathrm{a} \mathrm{substance} \mathrm{by} \mathrm{I}^{\circ} \mathrm{C}$. Its units are $\mathrm{Jg}^{-1} \mathrm{o}^{-1}$ or $\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$.
4	Latent heat of vaporisation	The energy required to change I kg of a liquid into I kg of gas with no change in temperature.
5	Latent heat of fusion	The energy required to change I kg of a solid into I kg of liquid with no change in temperature.
6	Boyle's law	The volume of a fixed mass of gas at constant temperature is inversely proportional to its pressure.
7	Charles' law	The volume of a fixed mass of gas at constant pressure is directly proportional to its Kelvin temperature.
8	Pressure law	The pressure of a fixed mass of gas at a constant volume is directly proportional to the Kelvin temperature.

Key equations

I	Ideal gas equation	$p V=N k T=n R T$
2	Number of moles	$\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}$
3	Molar mass	$n=\frac{N}{N_{A}}$
4	Work done	Molar mass $=$ molecular mass $\times N_{A}$
5	Mean square speed	$\left(c_{r m s}\right)^{2}=\frac{c_{1}{ }^{2}+c_{2}{ }^{2}+c_{3}{ }^{2}+\cdots+c_{N}{ }^{2}}{N}$
6	Kinetic theory	$p V=\frac{1}{3} N m\left(c_{r m s}\right)^{2}$
7	Average kinetic energy per molecule	$\frac{1}{2} m\left(c_{r m s}\right)^{2}=\frac{3}{2} k T=\frac{3 R T}{2 N_{A}}$

2	Key things to remember when deriving the equation: - Assume the particle collides elastically with the wall. - So the change in momentum $=m v-(-m v)=2 m v$ - Time between consecutive collisions of molecule with wall A_{1} is time $=$ distance $/$ speed $=21 / \mathrm{v}$. - Number of collisions per second is therefore $\mathrm{v} / 2 \mathrm{l}$. - Rate of change of momentum $=\Delta p / \Delta t=2 m v \times v / 2 l$ - Newton's 2 ${ }^{\text {nd }}$ law states $F=\Delta p / \Delta t=2 m v^{2} / 2 l=m v^{2} / l$ - Pressure = Force $/$ Area There are more steps but these are key.
3	In any sample of gas the molecules have a range of speeds. But the hotter the sample, the higher the average speed and average kinetic energy of the gas molecules.
4	Mean square speed, $\left(\mathrm{c}_{\mathrm{rms}}\right)^{2}$: Sum of the squares of the speed of all N molecules in the gas divided by N . Unit: $\mathrm{m}^{2} \mathrm{~s}^{-2}$.
5	The root mean square speed, $\mathrm{c}_{\mathrm{rms}}$, is the square root of ($\left.\mathrm{c}_{\mathrm{rms}}\right)^{2}$.
6	Average kinetic energy per molecule $=1 / 2 \mathrm{~m}\left(\mathrm{c}_{\text {rms }}\right)^{2}$
7	Total KE of a gas = average KE per molecule $\times \mathrm{N}$.

Key Vocabulary		
I	Ideal gas	A gas that obeys the gas laws under all conditions.
2	Mole	The number of atoms in 12 grams of carbon- 12 and is equal to 6.02×10^{23} atoms.
3	Molar mass	The mass of one mole of a substance.
4	Avogadro constant	The number of particles in I mole of a substance $=6.02 \times 10^{23}$.
5	Kinetic theory	Liquids and gases are made up f small particles which are in constant random motion.
6	Mean square speed	The sum of the squares of all the molecules' speeds divided by the number of molecules.
7	Root mean square speed	The square root of the mean square speed.

