

Subject: A-level Physics | Topic: Nuclear – types of radiation | Year Group: 13

Rutherford's model of the atom			α,	α, β and γ radiation			Key Vocabulary				
Ι	Rutherford fired alpha particles at a thin sheet of gold foil in a vacuum.	chamber gold foil	I	Alpha (α)	Consists of 2 protons and 2 neutrons.	Stopped by paper and/or skin.	Range in air is a few cm.	I	Atomic (proton) number	The num	ber of protons in nucleus.
	It was in a vacuum to prevent alpha particles been absorbed by the air.		2	Beta (β)	lt is an electron.	Stopped by thin metal sheet.	Range in air is several m.	2	Mass (nucleon) number	The num nucleus.	ber of protons and neutrons in
2	The gold foil must be thin to prev absorbed by the gold and so that once.		3	Gamma (γ)	It is high frequency EM radiation.	Intensity reduced by ½ by 5 cm of concrete or 1 cm of lead.	Ten to hundreds of m.	3	lsotope	numbers	f same element with different of neutrons.
3	Observation:	Explanation:	4	Alpha is t	he most ionising,	gamma is the least.		4	Background radiation	Nuclear radiation that is ever present. Sources include: radon, rocks, cosmic rays, nuclear fall out and medicine.	
	I. Most alpha particles straightI. Nuclear radius muchthrough the foil with little orsmaller than atomic radius.no deflection.2. Nucleus is positively		5 Alpha and beta deflect in opposite directions by electric and magnetic fields as they have opposite charges.					5	Avogadro constant	The num	ber of particles in one mole of a e. $(6.02 \times 10^{23} \text{ particles})$
	2. Some alpha particles suffered large	charged and most of mass of atom is contained in	 6 Beta deflects more than alpha as it is lighter. 7 Gamma is not deflected by magnetic or electric 			6	Mole	The amount of substance that contains			
	deflection/backscattering. nucleus.		7 Gamma is not deflected by magnetic or electric fields as it has no charge.					6.02 x 10 ²³ particles.		²³ particles.	
D	Detecting radiation and safety		Μ	Medical uses of α , β and γ			7	Molar mass	The mass compour	s of one mole of an element or nd.	
I	A Geiger-Muller (GM) tube is a device that registers a pulse of electricity each time an ionising particle enters it.						Uses of α , β and γ radiation				
2		The GM tube is connected to a digital counter, which keeps count of the number of ionising particles entering the tube.		either injected or ingested and a radiographer positions a detector outside the body which can produce a picture of the patient's internal organs. Changes in the amount of			I	and stool		To monitor and control the thickness of aluminium foil, paper and steel.	
3	When measuring the count rate coming from a source it is necessary to account for background radiation by measuring and subtracting a count rate for background radiation. This gives you the corrected count rate.		 gamma emitted from different parts would indicate how well the isotopes are flowing. 2 Technetium-99 is used as it only emits γ rays meaning it can be detected outside the body and since it is the least ionising it causes little damage. It has a short enough half-life and will not 				Tellers based on data from detector data from detector believe		If the material is too thick the count rate will fall and the rollers will be forced closer together.		
									If the material is too thin the count rate will increase and the rollers will be forced apart.		
4	When handling radioactive source •Always handle sources with tong •Point the sources away from you	zs	remain active in the body after use. But its half life is long enough to remain active during diagnosis.			2	2 γ radiation is used to sterilise medical equipment as it is the				
	 anybody else) •Fix the source in a holder which is not adjacent to where your body will be when you take measurements •Replace sources in lead-lined containers as soon as possible •Wash hands when finished 		3	Treating c	ancer. Tiny amoun	ts of radium-233 (α sou	irce) are dine-131 (ß		penetrating meaning it can irradiate all sides of the equipment and equipment can be sterilised whilst in its packaging.		
				injected into tumours to directly kill cancer cells. Iodine-131 (β source) is used to treat thyroid cancer. The cancer cells absorb radiation from the material and receive a high dose of energy. Doctors must work out the danger to nearby healthy tissue before giving this treatment.		cells absorb of energy.	3	Gamma emitters are also used as industrial tracers. E.g. a small amount of radioactive gas can be added to a pipeline system. By measuring the gamma intensity above the ground leaks can be detected in the pipes.			

Topic: Nuclear - radioactivity

Year Group: 13

Topic: Nuclear – unstable nuclei | Year Group: 13

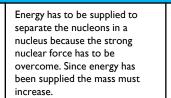
N	luclear radius						
I	Nuclear radii are approximately 10	⁻¹⁵ to 10 ⁻¹⁴ m.					
2	The nuclear radius, R, is given by the equation $\mathbf{R} = \mathbf{R}_0 \mathbf{A}^{1/3}$ where \mathbf{R}_0 is a constant equal to the radius of one nucleon (usually = 1.05 fm) and A is nucleon number (not activity as for most of this unit).						
3	The equation has been confirmed e	experimentally using 2 methods.					
4	Closest approach method Machine Machine a - particle (20) $E_{\rm K} = E_{\rm P} = \frac{Qq}{4\pi\epsilon_0 d}$	When an α particle makes a head on collision with the nucleus it is repelled backward due to electrostatic repulsion. At the distance of closest approach (d) the α particle is stationary. All its kinetic energy has been changed to electric potential energy. If you know the initial E _K of the α particle you can solve for d.					
5	Electron diffraction method $\sin \theta = \frac{0.612}{\text{nuclear radius}}$	A beam of high energy e ⁻ is fired at a thin solid sample of an element. A detector measures the number of e ⁻ scattered through different. The angle of the first diffraction minimum is given by the equation to the left allowing R to be determined.					

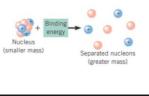
Nuclear excited states

Ι	After alpha and beta decays the daughter nucleus can be left in an excited state. To return to its ground state it emits a gamma photon.						
2	Here radium-226 is undergoing alpha decay. 6.2 % of the time this results in the daughter nucleus been created in an excited state. To return to its ground state it emits a gamma photon with energy 0.18 MeV. Therefore radium-226 emits alpha particles of two distinct energies, 4.78 and 4.60 MeV.	Radium-226 6.2 % alpha decay 4.60 MeV 93.8 % alpha decay 4.78 MeV Radon-222 0.18 MeV 0.0 MeV					

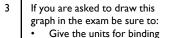
D	Decay equations						
-	Alpha	${}^{A}_{Z}X \longrightarrow {}^{A-4}_{Z-2}Y + {}^{4}_{2}\alpha$ An α particle (He nucleus) is emitted from the nucleus.					
2	Beta minus	${}^{A}_{Z} x \longrightarrow {}^{A}_{Z+1} y + {}^{0}_{-1} e + {}^{0}_{0} \overline{v_{e}}$ A neutron changes into a proton, an electron and an antineutrino. The proton remains in the nucleus, the electron and neutrino are emitted.					
3	Beta plus	${}^{A}_{Z}x \longrightarrow {}^{A}_{Z-1}y + {}^{0}_{+1}e + {}^{0}_{0}\overline{v_{e}}$ A proton changes into a neutron, a positron and a neutrino. The neutron remains in the nucleus but the positron and neutrino are emitted.					
4	Electron capture	$7\mathbf{I} \pm \mathbf{C} = 77 + \mathbf{D} \pm \mathbf{C} \mathbf{\rho}$					
		· ·					
St	able nuc	lei					
Ι	proton num nuclei. If asked to c an exam ma I. line passe 10/11 when increases as Z increases. 2. N = 115	nber, N, versus 140 ber, Z, for stable 120 Iraw this graph in 100 ke sure: 900 s through N = 900 Z = 10 and N 900					
2	In stable nuclei the electrostatic force pushing the nucleus apart is balanced by the strong nuclear force pulling it in.						
3		unstable they can emit alpha, beta and gamma an attempt to balance these forces.					

Decay graphs							
Ι	Alpha decay oc the most heavy Beta-minus dec nuclei with too neutrons (neutron rich r Beta-plus decay nuclei with too protons. Electron captur proton rich nu	y nuclei. cay occurs in many nuclei). y occurs in many re occurs in	A graph which nuclei decay by α , β and β + stable nuclei by α , β and β - stable nuclei by α , β and β - stable nuclei by α , β and β - stable nuclei by α , β - stable nucle				
2	You need to be decays on grap one to the righ nucleus here h number of 84 a number of 132 decays are req nucleus to beco this shows.	hs such as the it. The parent as a proton and a neutron . Often several uired for the	N 132 130 134 134 124 124 124 124 124 125 126 126 126 126 126 126 126 126 126 126				
3	Initially it undergoes an alpha decay reducing both the proton and neutron number by 2. Then it undergoes a beta-minus decay which increase Z by I an decreases N by I. And so on.						
4	Use arrows to show if N and Z are increasing or decreasing and always check the y-axis label to see if it is neutron number or mass number as either can be used.						
Ke	ey equatio	ns					
Ι	Nuclear r	adius	$R = R_0 A^{1/3}$				
Ke	ey Vocabul	ary					
I	Metastable	An excited nucleus that returns to its ground state with a half-life longer than 1 ns. To show that a nucleus is metastable we put a m after its mass number e.g. barium-137m.					
2	Parent nucleus	The nucleus which undergoes a decay event to produce one or more daughter nuclei.					
3	Daughter nucleus	The nucleus fo event.	rmed from a radioactive decay				

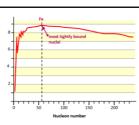

Торі Year Group: 13



$E = mc^2$					
Ι	The mass of an object is a measure of its energy content.				
2	If energy is transferred to an object its mass changes as mass can be converted into energy and vice versa.				
3	When a nucleus decays energy is released (either gamma photons or as the kinetic energy of the decay products).				
4	Since energy is released this means some mass must have been converted into energy and therefore the mass after a decay should be less than the mass before.				
5	The difference in mass (called the mass difference) is usually measured in atomic mass units, u.				
6	$Iu = I/I2^{th}$ mass of a C-I2 atom = 1.661 x $I0^{-27}$ kg = 931.5 MeV.				
7	To determine the energy released in a decay determine the mass difference between the starting and the end nuclei in kg then use $E = mc^2$ to get an energy in J. OR find the mass difference in u and multiply by 931.5 to get an energy in MeV.				


Binding energy

1



2 Nuclei with more nucleons have the largest binding energy. But in order to judge how tightly bound a nucleus is we use binding energy per nucleon

- energy per nucleon as MeV. Have the peak is at 8.7 MeV ٠
- and nucleon number 56. Have a sharp rise from origin and moderate fall not below 2/3 of peak height.

4 The nucleus with the highest binding energy per nucleon is iron-56. Therefore this is the most tightly bound and most stable nucleus.

ergy per MeV

ic: Nuclear – nuclear energy	Y

Spontaneous fission is rare. We can induce fission by bombarding heavy nuclei with neutrons, making them more	Fusion: small nuclei join togethe releasing energy.	Deutertum Helium	ergy				
products is less than the mass of the reactants. (The difference in mass is released as energy.) This means the binding energy per nucleon of the products is greater than the binding energy per nucleon of the reactants. This condition can only be met by nuclei smaller than iron-56 fusing. OR by nuclei larger than iron-56 splitting/undergoing fission. duced fusion Spontaneous fission is rare. We can induce fission by bombarding heavy nuclei with neutrons, making them more	• • •						
greater than the binding energy per nucleon of the reactants. This condition can only be met by nuclei smaller than iron-56 fusing. OR by nuclei larger than iron- 56 splitting/undergoing fission. Juced fusion Spontaneous fission is rare. We can induce fission by bombarding heavy nuclei with neutrons, making them more	products is less than the mass of the reactants. (The difference						
met by nuclei smaller than iron-56 fusing. OR by nuclei larger than iron- 56 splitting/undergoing fission.	e e , .	•					
Spontaneous fission is rare. We can induce fission by bombarding heavy nuclei with neutrons, making them more	met by nuclei smaller than iron-56 fusing. OR by nuclei larger than iron-	fusion fusion fusion fusion fusion fusion fusion fusion fusion fusion fusion fusion fusion	0-255				
bombarding heavy nuclei with neutrons, making them more	luced fusion						
	•	,					

2 This unstable nucleus then splits into two smaller nuclei called fission fragments along with a variable number of neutrons (usually 2 or 3).

3 235 U + neutron \rightarrow fission fragments + neutrons + energy

Fissi

2 Fi

3

4

5

Indu

Т

4

- This diagram shows how the neutrons produced in fission reactions can go onto create a chain reaction.
- 5 Not every neutron produced will go onto induce another fission reaction. Some maybe absorbed by a control rod, cladding, coolant or the neutron could escape from the reactor core.

Key equations						
I	Energy (J)	$E = mc^2$				
2	Energy (MeV) Not on data sheet	E = mass difference in u x 931.5				

Ke	ıry	
Ι	Atomic mass unit	I/I2 th of the mass of a carbon-I2 atom. I u = 1.66043 x 10 ⁻²⁷ kg.
2	Binding energy	The energy needed to separate all of the nucleons in a nucleus.
3	Binding energy per nucleon	The binding energy of the nucleus divided by the nucleon number.
4	Nuclear fusion	The joining together of small nuclei.
5	Nuclear fission	The splitting up of large nuclei into smaller nuclei.
6	Fission fragments	The atomic fragments left after a large atomic nucleus undergoes fission.
7	Critical mass	The minimum mass required to establish a self-sustaining chain reaction.
8	Critical chain reaction	Exactly one neutron from each fission event is allowed to cause another fission event.

Topic: Nuclear - reactors

Year Group: 13

Dec	.KIOOL								
N	Nuclear waste			Nuclear reactors			Key Vocabulary		
I	High-level waste		1	control fuel	The main components	I	Fissile materials	A radioactive isotope which is capable of sustaining a chain reaction.	
	Examples Spent (used) fuel rods. Radioactivity Highly radioactive. Some will be radioactive			of a nuclear reactor.	2	Thermal neutrons	A slow moving neutron which can be captured by a fissile nucleus.		
		for thousands of years. Generates a lot of heat.		moderator		3	Fast neutron	An energetic neutron produced in nuclear fission.	
	Storage	Placed in cooling ponds close to the reactor for a number of years.							
		The plutonium/uranium is separated to be recycled. It can be vitrified/made solid into	Fuel			С	oolant		
		Pyrex glass. Then placed in steel/lead/concrete containers to be stored deep underground in a geological stable	I	The fuel used in nuclear reactors is either natura U-235 and 99.3% U-238) or enriched uranium (4 96% U-238).		1		nerate lots of heat in the reactor core which is er into high pressure steam (to spin a turbine, or and so on).	
2	area. Intermediate-level waste		2	It is U-235 that undergoes fission. It is the fissile	e material.		The coolant that passes through the core, absorbing the heat created by the fission events before transferring it to a secondary cooling system where high pressure steam is creat		
	Examples	Cladding that is removed from the outside of the spent fuel rods.	3	3 A movable neutron source rods provides the neutrons required for the initial start-up of the reactor.		3 Water and carbon dic	n dioxide are commonly used as it needs to be ad around and have good heat transferring		
	Radioactivity	waste and it does not generate enough heat		4 It is not possible to use all the U-235 in the fuel rods as over time the U-235 percentage decreases as it undergoes fission and			abilities.		
	to require cooling.		produces its decay products.			Moderator			
	Storage	Storage Some is stored in vaults and some is put in steel drums which are then encased in concrete and often stored underground.		5 The fission fragments produced absorb neutrons which means there are too few neutrons to maintain the chain reaction.			I The neutrons produced by fission events have lots of kine energy and are therefore moving quickly.		
	Thick concrete/bitumen walls are required to shield operators from high levels of		S	pent fuel		2	U-235 is much m slowly (thermal r	ore likely to absorb a neutron that is travelling neutrons).	
3	radiation. Low-level waste				t is removed	3		often water or graphite) slows the neutrons on events down without absorbing them.	
	Examples Contaminated clothing (e.g. protective			I Fuel from a reactor which is no longer useful and is removed for reprocessing.					
		shoes and gloves). Considerable amounts of low level waste are produced by hospitals.		2 When U-235 undergoes fission it releases neutrons and		Control rods			
	Radioactivity	Has much lower levels of radioactivity then		produces fission fragments that are neutron rich.		1	Rods used to co	ntrol the rate of which fission occurs.	
		the other types of waste and does not generate heat.	3	The fission fragments are unstable and so often e gamma radiation.	emit beta and	2		nto the reactor they absorb neutrons slowing n. When raised out, the rate of fission rises.	
	Storage It is usually compacted to reduce its volume and then stored in steel drums.		4	The spent fuel is very radioactive and generates l	lots of heat.	3	Contain cadmiun	n or boron.	