

Subject: A-level Physics

Topic:Astrophysics

Refracting telescope Ray diagram for refracting telescope in normal adjustment. to "top" point o virtual image at infinity Refracting telescopes use two convex lenses (the objective lens 2 and the eyepiece lens). Normal adjusted means the lenses are set up so that the 3 principal focus of the objective (1st) lens is in the same position as the principal focus of the eye lens (2^{nd}) . 4 Length of a refracting telescope in normal adjustment = $f_0 + f_e$ **Problems with refracting telescopes** Chromatic aberration: Glass refracts different colours by different amounts (blue more than red). The principal focus is different for each colour, blurring the image. Spherical aberration: 2 The curvature of the lens results in light rays in a parallel beam being focussed at slight different positions. Outer rays converge sooner than rays closer to centre. 3 Mounting the lens can only be done using the edge of the lens. 4 Lenses are heavy and distort under their own weight. 5 Large magnifications require long fo and therefore long telescopes. Using glass of sufficient clarity and purity to make large diameter 6 telescopes is extremely difficult.

Ke	ey equations	
Ι	Magnification	$M = \frac{f_o}{f_e} = \frac{\alpha}{\beta}$

K	Key Vocabulary								
Ι	Principle axis	An axis of a lens that passes through its centre, perpendicular to its surface on both sides.							
2	Lens axis	The axis passing through the centre of a lens perpendicular to its principal axis.							
З	Principal focus	The point where incident rays parallel to the principal axis converge.							
4	Focal length	The distance between the lens axis and the focal plane.							
5	Focal plane	The plane perpendicular to the principal axis of a lens, on which the principal focus lies.							
6	Real image	An image formed when light rays from a point on an object are made to pass through another point in space. The image can be captured on a screen.							
7	Virtual image	An image formed when light rays from a point on an object appear to have come from another point in space. The image cannot be captured on a screen.							
8	Chromatic aberration	Light of different wavelengths (colours) is refracted to different foci, resulting in the image for each colour being in a slightly different position.							
9	Spherical aberration	Rays at different distances from the principal axis have different focal points, resulting in a blurring of the image.							

resolving power of

a telescope.

6

D

Two objects can be resolved if their angular separation is θ or greater. More desirable telescopes will have a smaller value for θ .

Diameter of mirror or lens

Reflecting telescopes Collecting power Reflecting telescopes use a concave mirror to converge incoming rays. Collecting power is the energy collected per second. 2 In the **Cassegrain** It is proportional to the area of the telescope's objective. 2 Main Mitter arrangement a secondary convex 3 A bigger dish collects more photons and energy from an object in a mirror sends rays given time meaning fainter objects can be detected. down an opening in the primary mirror. eyepica The image is then brought to a focus Other telescopes Secondary Minor CONVER ABM using an eyepiece or camera. Telescopes can be built to Spherical Parabolic detect types of radiation 3 It is important that other than light. For the concave mirror example. Infra-red, UV, xis perfectly parabolic rays and radio waves. in shape to prevent spherical aberration. 4 Advantages No chromatic aberration. of reflecting No spherical aberration if using a parabolic mirror. telescopes: 2 Infra-Similar structures to optical reflecting telescopes. Mirrors can be supported from behind. red Their detectors have to be kept very cold and away from other heat sources. Since water vapour the atmosphere absorbs IR **Resolving power** mainly used in space or at high altitudes. There are some wavelengths where ground base Resolving power is the ability to produce separate images of closely measurements can be made. spaced objects. 3 Radio Use large, parabolic objective dishes to collect 2 When waves pass through the opening of a telescope they diffract, radio waves which are then reflected to a focus. wave producing a circular diffraction pattern. Are ground based since radio waves can pass through the atmosphere. 3 Telescopes do not focus the light from a star to a Operate day and night since they are not affected perfect point but to a disc called an Airy disc. by visible light from the Sun. 4 For two objects to be resolved the centre of the Are positioned away from artificial sources of Airy disc of one object must be at least as far away radio waves. as the 1st minimum of the other source. Because radio waves have long wavelengths these telescopes need very large diameters to have θ Minimum angle that can be resolved (rad) 5 The Rayleigh decent resolving powers. criterion allows us Have good collecting powers since they have λ Wavelength of radiation collected to determine the large diameters.

UV and

X-ray

Are positioned in space since the atmosphere

absorbs these wavelengths.

4

Key equations									
I	Collecting power	Collecting power ∝ area ∝ diameter ²							
2	Rayleigh criterion	$\theta = \frac{\lambda}{D}$							

Key Vocabulary

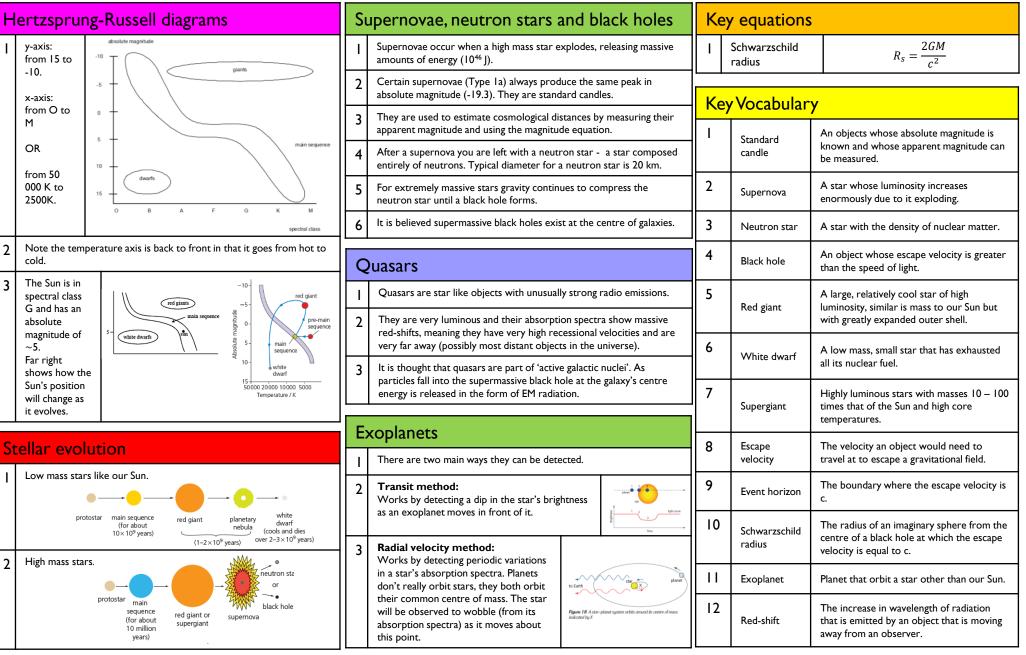
	/	/				
I	Collecting power	A measure of a telescope's ability to collect incident electromagnetic radiation.				
2	Resolving power	A measure of the ability of a telescope to distinguish between adjacent astronomical features or objects,				
3	Rayleigh criterion	Two objects will just be resolved when the first minimum in the diffraction pattern of one image coincides with the central maximum of the other.				
4	Airy disc	The bright central region in an optical diffraction pattern caused by light entering a circular aperture.				
5	Quantum efficiency	The ratio of the number of photons falling on a device that produce a signal to the total number of photons falling on the device.				

CCDs

	I	Charge-coupled devices are silicon chips which are divided into pixels.							
-	2	Light (photons) are focussed on the CCD which causes electrons to be released. The number of electrons released is proportional to the light intensity.							
e	3	The electrons are trapped in potential wells, building up an electron pattern.							
	4	When exposure is complete the charge is processed to form an image.							
	5 Advantages High quantum efficiency (greater than 70								
			Can be linked directly to a computer.						

Be	Beckfoot											
L	uminosity and a	D	Distances to stars						Key equations			
Ι			lipparcos ranked the brightness of over n on a 1 (brightest) to 6 (dimmest) scale.		The distance to a star can be determined by comparing its apparent and absolute magnitude.					I	Magnitude equation	$m - M = 5 \log\left(\frac{d}{10}\right)$
2	an increase of 1 on the	e I -6 sc	nes brighter than magnitude 6 stars. So ale corresponds to an increase in light	2	и г .	(d)	m M	Apparent m	0	2	Wien's law	$\lambda_{max}T = 0.0029 \mathrm{mK}$
	received by 2.51, i.e. 10	00 ^{1/5} .		4	$m - M = 5 \log\left(\frac{d}{10}\right)$	$pg(\overline{10})$	M	Absolute ma	5	3	Stefan's law	$P = \sigma A T^4$
3	Over time this scale ha magnitude scale.	as been	developed. It is called the apparent				d	Distance to the object in parsecs.				
4	Apparent magnitude is		right a star appears on Earth. It depends y is and how far away it is.	- 3	 Stars which are closer than 10 pc have a brighter (more negative) apparent magnitude than absolute magnitude. m-M < 0 Stars further than 10 pc have a dimmer (more positive) apparent magnitude than absolute magnitude. m-M > 0 If m = M the star must be at a distance of 10 pc from Earth. 				tude. m-M < 0 (more positive) apparent	K	y Vocabulary	
5	Larger values of appare	ent mag	nitude are given to dimmer stars.							I	Luminosity	The total energy emitted per second.
6	The apparent magnitud +30 (stars visible to on		e runs from -26 (our Sun) to approaching largest telescopes).	S	pectral cla	isses				2	Intensity	The amount of energy radiated per second per square metre. Also called brightness.
BI	ack bodies		The light we d absorption line used to deterr	es in. These	e can b	ре	е Fa H Fe My Fe Na O ₂ H O ₂	3	Apparent magnitude	Brightness of a star as seen from Earth.		
I	A black body is a theor object that absorbs all that hits it, so it appear	2	star. The hydrogen	The hydrogen absorption lines in the visible part of the spectrum are				4	Absolute magnitude	Brightness (or apparent magnitude) of a star from a distance of 10 parsecs.		
	perfectly black when co When heated above at zero, it emits light acro		caused by electrons moving from n = 2 to higher levels. These are lines are called Balmer lines . So if Balmer lines are seen in the visible spectrum the star must be				gher levels. These are	5	Parsec	The distance at which I AU subtends an angle of I arc second.		
	whole EM spectrum, in distribution that looks	like thi	wavelength nm	3	hot since the electrons have already been excited to n = 2.				ccited to n = 2.	6	Light year	The distance travelled by light through a vacuum in one year.
2	Stars are approxima	ite bla	ck bodies.	4 However, if the star was really hot then the electrons would exist in higher excited states (n > 2) and we would not see Balmer lines.								
3	A hotter black body wi than cooler ones since		more radiation at shorter wavelengths A	5	5 This means there are only a range of T for which Balmer lines can be seen so if we can see them we know roughly how hot the star is.					7	Astronomical unit	The average distance between the Earth and the Sun.
4	So as T increases λ_{max}	6	6 Stars are put into spectral classes based on their absorption spectra.				heir absorption spectra.	8		For a hot object, the wavelength of the		
5	Wien's law states,				Spectral Class	Intrinsic Colour	т	Temperature/K	Prominent Absorption Lines		Wien's law	peak emission intensity is inversely proportional to the absolute temperature
	λ_{max} T = 0.0029 mK (where mK stands for metres Kelvin).				0	blue		25000 - 50000	He+, He, H			of the object.
6	The luminosity of a star is a measure of the energy it emits per				A	blue blue-white		11000 - 25000 7500 - 11000	He, H			·
	second. It depends on the star's size and temperature.				F	blue-white white		7500 - 11000 6000 - 7500	H (strongest) ionised metals ionised metals	9		The total energy emitted per square metre
	Stefan's law states. P Luminosity (power) of star		11	G	yellow-white		5000 - 6000	ionised & neutral metals		Stefan's law	per second from an object at a given	
7	Stefan's law states,		Luminosity (power) of star		K	orange		3500 - 5000 < 3500	neutral metals neutral atoms, TiO			temperature T is proportional to T^4 .
	$P = \sigma A T^4$	σ	Stefan's constant					() kin arbier a		10		A pattern of dark spectral lines in a
		A	Surface area of star	7	7 One way to remember the order of the spectral classes is using the mnemonic 'Oh be a fine girl, kiss me'.				ctral classes is using the	``	Absorption spectrum	continuous spectrum produced by the
		Т	Temperature of star		0 , , ,						- spectrum	absorption of photons of precise energy.

2


3

2

Topic:Astrophysics

Year Group: 13

Doppler effect						Т	he Big Bang		Key equations			
Ι	Doppler shift is the change in frequency of waves emitted by an object as it moves towards or away from an observer.						The big bang theory states that the universe began 14 billion years ago from hot, dense point that started to expand.			Doppler equation	$\frac{\Delta\lambda}{\lambda} = \frac{\lambda_{app} - \lambda}{\lambda} = -\frac{v}{c}$	
2	$z = \frac{\Delta z}{\lambda}$	$\frac{\lambda}{2} = -\frac{\Delta}{2}$	$\frac{f}{f} = -\frac{v}{c}$		2		The three pieces of evidence supporting this are:	Expansion of universe (Hubble's law)	2	Red shift	$z = \frac{\Delta\lambda}{\lambda} = -\frac{\Delta f}{f} = -\frac{v}{c}$	
		oppler s			656-2 mm 486-1 mm 434-0 mm 410.1 mm			Cosmic microwave background radiation (CMBR)	3	Hubble's law	$v = H_0 d$	
			ength of line velength of the	line	red-shifted hydrogen absorption spectrum			Relative abundance of hydrogen and helium	4	Age of universe	Age of universe = $\frac{1}{H_0}$	
	upp I		m Earth	_	blue-shifted hydrogen absorption spectrum			ingel ogen and heidin		_	H ₀	
	v Relative velocity of approach of Earth and the star. It is positive					В	inary stars		Key Vocabulary			
	appro	when two objects are approaching and negative when they are receding.					Binary star systems consist o centre of mass.	f two stars orbiting their common		Doppler effect	The change in frequency and wavelength of radiation due to the relative motion of a source and observer.	
Η	Hubble's law					2	2 These systems can be difficult to observe because the stars are close together so we need telescopes with good resolving power to observe them.			Recession velocity	The rate at which an object is moving away from Earth.	
	Hubble used type I a supernova to measure the distances to some galaxies. He also measured the red-shift of some galaxies.					3	Position I - the there are two absorption lines as both stars are in line.	Two absorption lines shown for whole system	3	Hubble's law	The rate at which a galaxy recedes is directly proportional to its distance from us.	
	galaxy recedes is directly proportional to its distance from us. t_{table} $t_$						Position 2 - the light coming from star B is red-shifted as B is	F F F F F F F F F F F F F F F F F F F	4	CMBR	lsotropic radiation in the microwave region with a black-body temperature of 2.7 K.	
3					The light coming from star F is blue shifted as it moving toursda us And	B F F F F F F Faint star absorption lines red-shifted and bright star absorption lines	5	Dark energy	A hypothetical form of energy that permeates all space and tends to increase the rate of expansion of the universe.			
		H ₀ Hubble's Constant in km s ⁻¹ Mpc ⁻¹	in km s ⁻¹ Mpc ⁻¹		so on.	1 blue-shifted line of sight	6		Unobserved matter that is believed to be			
		d			ne galaxy in Mpc		This graph shows how the wavelength of light			Dark matter	abundant within galaxies throughout the universe.	
4	Hubble's consta	int can be used to estimate the age of the universe.				from one of the stars would vary as the stars		7		The explosion event that occurred about		
5	To determine the constant into s ⁻¹			verse convert the value for Hubble's reciprocal.			orbit their common centre of mass			Big Bang theory	14 billiion years ago that is considered the beginning of the universe.	