
Subject: A-level Physics

Topic:Waves

Year Group: 12

individual displacements.

is twice the first and so on.

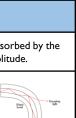
(b) Copyright © 2005 Pearson Prentice Hall, Inc.

Subject: A-level Physics

	LKIUUL									
Stationary waves required practical				Pc	Polarisation			Key Vocabulary		
I	This setup can be used to produce stationary waves on a string. It can be used to verify that the frequency of the I st harmonic is given by, $n=2$			Only transverse waves can be polarised.		I	Polarised w	/ave	A transverse wave whose oscillations are confined to one plane.	
			2	Transverse waves have oscillations that are perpendicular to the direction of wave travel. There are an infinite number of ways this can happen.		2	Diffraction		The spreading out of a wave after passing through an aperture or around an obstacle.	
	$f = \frac{1}{2l} \times \sqrt{\frac{1}{2l}}$		mass	3	A polarising filter allows waves only with oscillations in a certain plane to pass through.	Light waves vibrate in any direction	3	Monochror	matic	Radiation of a single frequency / wavelength.
2	Independent Dependent	ndent Fundamental frequency (measured from				Polarizing filter	4	Coherent		Two sources of waves are coherent if they have the same frequency, are polarised in the same plane and they maintain a constant phase difference.
	Control	signal generator). htrol Mass per unit length of string.		4	Polarising filters can be used to r		5	Constructiv		Interference between waves that results in an increase in amplitude.
			¹ 5	TV signals are also transmitted as polarised waves. The alignment of the receiving aerial must match the polarisation direction of the transmitted wave.			Destructive	-	Interference between waves that results in a decrease in wave amplitude.	
Sta	Stationary waves in pipes							D 1 11/1		How much further one wave has
I	Blowing into a pipe (e.g. flute) causes the air in it to vibrate.			Di	Diffraction			Path differe	ence	travelled than the other.
	Sound waves reflect from both the closed and open ends of a pipe, resulting in a stationary wave in the pipe.			Diffraction is most noticeable when the aperture is a similar size to the wavelength of the wave.			Interference			
2	Nodes are always found at the closed ends of pipes. Antinodes are always formed at the open ends of pipes.		2	2 The diffraction of light through a single slit produces this Single Slit			When the path difference from the two sources is a full			
3	Open at Both Ends Ist Harmonic Dard Harmonic Total Harmonic			pattern. The central maxima is twice as wide and much more intense than the other maxima. The smaller the gap, the wider the central maxima.		2	where n is an constructive ir at B.	of wavelengths (nλ n is an integer) you get ctive interference e.g.		
			3rd Harmonic	3	This is the diffraction pattern of light when passed through a double slit.	Double Slit		half, 1.5, 2.5 n wavelengths, (
							3	3 To demonstrate a clear interference pattern you need to use a coherent source such as a laser.		
				4	When white light passes through monochromatic light, each colour which leads to a rainbow effect in	diffracts a different amount	4	Laser safety	reflectiv Always	whine the laser towards anyone or towards ve surfaces. display a warning sign on the door. off when it is not needed.

Subject: A-level Physics

Key equations



λD

Beckfoot Young's double slit **Diffraction gratings** Diffraction gratings contain lots of equally spaced slits. Young's double slit experiment demonstrates two source interference with 2 They produce very sharp interference patterns, allowing for light by shining a light source more accurate measurements. (e.g. a laser) through a double 3 The interference pattern produced slit. has a line of maximum brightness at The pattern produced is Light from a sodium larns the centre called the zero order line. shown here. The lines either side are called first order lines and so on. It can be shown that, w = fringe spacing 2 D = distance between slits d = distance between slits 4 and screen $d\sin\theta = n\lambda$ θ = angle between incident beam and nth w = -s = spacing between slits maximum n = order of maximum 3 The required practical on Young's double slit experiment requires you to use the above formula to determine the λ of a laser. 5 d = 1 metre / number of slits in a metre Independent Distance between slit and screen. 4 The required practical on diffraction gratings requires you to 6 the above formula to determine the λ of a laser. Dependent Fringe spacing Control Spacing between slits **Optical** fibres 5 To reduce percentage uncertainty in measurements of w you would Optical fibres are long, very thin solid cylinders of glass or measure the distance between many fringes then divide by the transparent polymer. number of fringe widths between them. 2 The fibres used in communications are made up of two layers glass. The inner layer (core) is where the light is transmitted a Refraction the outer layer (cladding) protects the cable. Waves travel more slowly in optically Light passes through the fibre using total internal reflection. 3 dense mediums. Wavefronts When a wave slows down the wave When light travels 4 fronts get closer together, meaning into a less optically dense medium it is the wavelength is reduced. refracted away from The frequency is unchanged as this is the normal (shown determined by the source. here). Rays of light refract towards the normal when they slow down and 2 As θ_1 increases, so does θ_2 until the light ends up being 5 away from the normal when they speed up. refracted along the boundary. The angle of incidence at which this happens is called the critical angle. 3 The higher the refractive index, the more optically dense the material and the more refraction. If you increase the angle of incidence further still no light 6 The refractive index of air is usually taken to be 1. escapes from the medium, the light is totally internally reflected.

	'	Young's double slit		$w = \frac{m}{s}$							
= 3	2	Diffraction gr	ating	$d\sin\theta = n\lambda$							
der $n - 2$ rum corder $n = 1$ simum rdeviated light ntral maximum	3	Refractive ind	lex	$n = \frac{c}{c_s}$							
order n = 1 ximum der n = 2 ium = 3	4	Snell's law		$n_1\sin\theta_1 = n_2\sin\theta_2$							
~	5	Critical angle		$\sin\theta_c = \frac{n_2}{n_1}$							
	K	ey Vocabı	ılary								
use	1	Refraction		The change in direction of a wave due to a change in wave speed as it travels between materials.							
use	2	Refractive index	The ratio of the speed of light in a vacuum, c, to the speed in the substance, c _s								
	3	Critical angle	The angle of incidence above which all the light is totally internally reflected.								
s of	Signals in optical fibres										
and	1	Absorption is where some of the signal's energy is absorbed by the material of the fibre, resulting in a reduced signal amplitude.									
	2	2 If a fibre is bent too sharply it will alter the angle the ray makes with the normal. It can mean the light strikes the cladding at less than the critical angle and leaves the fibre.									
<u>``</u>	3	different angles and therefore take different paths, meaning each ray takes a different time to leave the fibre. The signal is spread out by the time it reaches the receiver. Solution: use a narrower fibre or use a core									
• 	4	and cladding of similar n. 4 Chromatic dispersion – A material's n varies with λ meaning white light splits into a									

spectrum. Solution: use monochromatic light.

