

Atomic structure At the centre of every atom is a nucleus that contains protons and neutrons. Electron Protons and neutrons are called Protor nucleons. Neutro Electrons orbit the nucleus. Carbon ator The specific charge of a particle is the ratio of its charge to mass 2 Forces in the nuclei The protons in the nucleus repel one another due to the electromagnetic force, pushing the nucleus apart. The strong nuclear force (SNF) is attractive and pulls the nucleus 2 together. The SNF acts between protons and neutrons whereas the 3 electromagnetic force acts between protons only. The range of the 4 electromagnetic force is force infinite whereas the SNF is short ranged. ectrostatic force 5 SNF is attractive up to distance about 3 fm after which it from centre femtometres falls rapidly to zero. Below 0.5 fm the strong nuclear force is actually repulsive. 6 In stable nuclei the SNF and the electromagnetic force are balanced. In unstable nuclei these forces are not balanced. Photons and electronvolts Einstein proved that EM radiation travels as photons which are packets (quanta) of energy, 2 The energy of photons is often given in electronvolts (eV) rather than Joules as their energies are very small and the Joule is guite a big unit. 3 To convert between the two units do the following, energy in eV = energy in $|ou|es / 1.6 \times 10^{-19}$ energy in |oules = energy in $eV \times 1.6 \times 10^{-19}$

Unstable nuclei								
I	Large unstable nuclei emit alp	oha (α)	parti	icles to b	ecome	e stabl	e.	
2	They are made of 2 protons and 2 neutrons and so cause the nucleon number of the atom to decrease by 4 and the proton number to decrease by 2. The general decay equation is, $AZ \rightarrow A^{-4}_{Z-2} Y + {}^{4}_{2} \alpha$					${}_{2}^{4}\alpha$		
3	Nuclei can also become stable is by beta-minus decay.							
4	In this process a neutron in the nucleus changes into a proton. A beta-minus particle (an electron) is emitted from the nucleus along with an antineutrino.							
5	The general decay equation is, $ \begin{array}{c} A \\ Z \\ X \\ Z^{+1} \\ Y \\ Z^{+1} \\ Y \\ A \\ Z^{+1} \\ Y \\ Z^{+1} \\ Z^{+1} \\ Y \\ Z^{+1} $			${}_{0}^{0}\overline{v_{e}}$				
Energy levels								
Ι	Electrons in atoms can only exist in certain well-defined energy levels.		,	-0.38 eV 8 -0.54 eV -0.54 eV -0.55 eV -0.85 eV	nisation	$= n^{n-\infty}$ $= n^{n-3}$ $= n^{n-2}$ antum numbers		
2	The lowest energy level is n =	=						

3	When an electron is in any other energy level (other than the
	ground state) we say it is excited.

-13.6 eV ground level n=1

and is called the ground state.

- 4 To excite to a higher energy level an electron must absorb the exact energy difference between the two levels.
- 5 This energy could come from absorbing a photon with the exact right energy or colliding with a free electron and absorbing some of their kinetic energy.
- 6 When electrons de-excite to lower energy levels the energy they lose is emitted as a photon.
- 7 If the electron gains enough energy it can be removed from the atom. We say the atom has been ionised.

Ke	ey equations				
1	Specific charge	Specific charge $= \frac{Q}{m}$			
2	Photon energy	$E = hf = \frac{hc}{\lambda}$			
3	Energy levels	$\Delta E = E_1 - E_2 = hf$			
4	Wave speed	$c = f\lambda$			

Ke	Key Vocabulary						
I	Nucleon (or mass) number	The number of protons and neutrons in the nucleus.					
2	Atomic (or proton) number	The number of protons in the nucleus.					
3	lsotope	Atoms with the same number of protons but different numbers of neutrons.					
4	Specific charge	The ratio of charge to mass.					
5	Electronvolt	The work done (or energy change) of an electron when it moves through a potential difference of 1 V.					
6 Ionisation The energy fro		The energy needed to remove an electron from the ground state of an atom.					

Fluorescent lamps						
Ι	Fluorescent lamps contain mercury vapour.					
2	A high voltage is applied across the lamp which accelerates free electrons passing through the lamp. These then collide with the electrons in the mercury vapour atoms, causing them to excite.					
3	Each excited electron then de-excites, emitting a photon of energy equal to the energy difference between the levels. These photons are in the UV region of the EM spectrum.					
4	The lamp has a phosphorus coating which absorbs the UV photons, exciting the coating's electrons. These atomic electrons de-excite indirectly to lower energy levels, emitting lower energy photons.					

Subject: A-level Physics

_						
5			<u>_</u>	f i	ra	
	D	e				

Wave-particle duality All particles display wave and particles properties. 2 Proof for light ... Behaves as wave: diffraction (e.g. interference pattern) **Behaves as particle:** photoelectric effect 3 Proof for electrons **Behaves as particle:** deflected in electric fields ... Behaves as wave: diffraction pattern (see below) This diagram shows 4 an electron diffraction tube and the diffraction pattern that is produced. In the diffraction tube an e-Particle behaviour would ٠ 5 beam hits a thin graphite target. only produce a circle of After passing through the light graphite target the e⁻ strikes a • The electrons must have fluorescent screen and produce diffracted as they pass the pattern shown above. This through spaces between proves electrons behave as atoms of the crystals waves because ... proving their wave property

	The photoelectric effect				Key equations					
	I	Metals contain free electrons.				I	De Broglie wavelength		$\lambda = \frac{h}{mv}$	
	2	The free elec energy.	The free electrons near the surface of the metal absorb light energy.			2				
	3	3 If these electrons absorb enough energy they will overcome their attraction to the positive metal ions and the electron will be released from the metal's surface.				2	Kinetic energy		$E_K = \frac{1}{2}mv^2$	
	4	This provides evidence	This providesFor a given metal no photoelectrons are emitted if the radiation is below a certain frequency, regardless of its intensity.			3	Photoelectric effect $hf =$		$hf = \phi + E_{Kmax}$	
		for the particle nature of light When electrons are emitted from the metal surface their energy depends on the frequency of the light, not on its amplitude.			4	Threshold frequency		$f_o = \frac{\phi}{h}$		
		···	If the light used is electrons are emi	above a certain frequency tted immediately.						
	5	Electrons are light is above called the thr	ons are only released when the above a certain frequency the threshold frequency. The			5	Stopping potential		$V_{stop} = \frac{E_{Kmax}}{e}$	
		emitted elect different ener (from AQA r	d electrons have a range of nt energies. Here's why AQA mark scheme)			Key Vocabulary				
	6	Energy is nee The work fur electron to e Light consists One photon	Energy is needed to remove an e ⁻ from the surface of the metal. The work function, φ , is the minimum energy needed by an electron to escape from the surface. Light consists of photons, each of energy $E = hf$. One photon is absorbed by one electron.			Ι	Threshold frequency, f _o	The radi elec mat	The minimum frequency of radiation needed to liberate an electron from the surface of a materials.	
*		KE of an emitted electron cannot be greater than $hf - \varphi$. An electron below the surface needs to do work/uses energy to reach the surface. Kinetic energy of such an electron will be less than $hf - \varphi$.			2	Work electron from		e minimum frequency of ation needed to liberate an		
	7	A graph of E _k frequency car determine th frequency, we Planck's cons Gradient = h	A graph of E _{kmax} against frequency can be used to determine the threshold frequency, work function and Planck's constant. Gradient = h			3	function, φ Stopping	The stop	e potential difference needed to	
		Y-intercept = X-intercept =	- φ f _o	- 0			potential	pho pho	toelectrons in the toelectric effect.	

