





| E | Equilibrium                                                          |  |  |  |  |  |
|---|----------------------------------------------------------------------|--|--|--|--|--|
| I | If an object is in <b>equilibrium</b> the resultant force is 0 N.    |  |  |  |  |  |
| 2 | The object is either stationary or moving at a constant velocity.    |  |  |  |  |  |
| 3 | When the force arrows are drawn tip-to-tail they form a closed loop. |  |  |  |  |  |



Acceleration

Rate of change of gradient gives

| Ke | Key Vocabulary                                                                                            |                                                                                                             |                                                  |  |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|--|
| Ι  | Scalar                                                                                                    | A quantity with                                                                                             | a magnitude but no direction.                    |  |  |  |  |  |
| 2  | Vector                                                                                                    | A quantity with                                                                                             | a magnitude and a direction.                     |  |  |  |  |  |
| 3  | Displacement                                                                                              | How far an obje<br>starting point in                                                                        | ect has travelled from its<br>a given direction. |  |  |  |  |  |
| 4  | Velocity                                                                                                  | The rate of chai                                                                                            | nge of displacement.                             |  |  |  |  |  |
|    | Instantaneous The velocity at a particular moment in time. velocity                                       |                                                                                                             |                                                  |  |  |  |  |  |
| 5  | Acceleration The rate of change of velocity.                                                              |                                                                                                             |                                                  |  |  |  |  |  |
| 6  | Equilibrium                                                                                               | When all the forces acting on it are balanced<br>and cancel one another one. The resultant<br>force is 0 N. |                                                  |  |  |  |  |  |
| Ve | elocity-time                                                                                              | graphs                                                                                                      |                                                  |  |  |  |  |  |
| Ι  | Stationary<br>Time (s)                                                                                    |                                                                                                             |                                                  |  |  |  |  |  |
| 2  | Velocity-time graphs go into the negative region when the object is travelling in the opposite direction. |                                                                                                             |                                                  |  |  |  |  |  |
| 3  | A curve of increasing gradient means the rate of acceleration is increasing.                              |                                                                                                             |                                                  |  |  |  |  |  |
|    | increasing.                                                                                               |                                                                                                             |                                                  |  |  |  |  |  |
| 4  | increasing.<br>Gradient gives                                                                             |                                                                                                             | Acceleration                                     |  |  |  |  |  |

### Acceleration-time graphs

2

| Any line above the time axis<br>means the object is accelerating<br>(even if the gradient is<br>negative). | <sup>7</sup> <sup>10</sup> acceleration<br><sup>7</sup> <sup>sub</sup> / <sub>1</sub> <sup>5</sup> <sup>-10</sup> <sup>-</sup> |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area under graph gives                                                                                     | Total change in velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



## Subject: A-level Physics

# **Topic: Mechanics**

Year Group: 12



| Uniform acceleration  | (SUVAT) |
|-----------------------|---------|
| Official acceleration |         |

The SUVAT equations can only be used for motion along a straight line with CONSTANT acceleration. 2 Symbol Quantity SI unit

| s | Displacement     | m                |
|---|------------------|------------------|
| u | Initial velocity | ms <sup>-1</sup> |
| v | Final velocity   | ms <sup>-1</sup> |
| а | Acceleration     | ms <sup>-2</sup> |
| t | Time             | S                |

#### Things to remember: 3

- If the object starts at rest then u = 0 ms<sup>-1</sup>.
- Often the acceleration will be  $g = 9.81 \text{ ms}^{-2}$ . ٠
- You decide which direction is positive. If the object is moving downwards it often makes sense to take downwards as positive in which case  $g = +9.81 \text{ ms}^{-2}$ .

#### Newton's laws

| Ι | See definitions in key vocabulary box. |                                                                                                                                                                          |  |  |  |
|---|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 2 | Newton's I <sup>st</sup> law           | Means an object will remain stationary or<br>moving at a constant speed until a resultant<br>force acts.                                                                 |  |  |  |
| 3 | Newton's 2 <sup>nd</sup><br>law        | In equation form we can write,<br>$F = ma = \frac{\Delta(mv)}{\Delta t}$ Where $\Delta(mv)$ is the change in momentum in kgms <sup>-1</sup> and $\Delta(mv) = mv - mu$ . |  |  |  |
| 4 | Newton's 3 <sup>rd</sup><br>law        | Example – when swimming your arms push<br>back against the water, the water pushes you<br>forwards with an equal and opposite force.                                     |  |  |  |

| Te         | Terminal velocity                                             |                                                          |                                                                                                                                                                                                                                                      |                               |                             |                 |  |
|------------|---------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------|-----------------|--|
| Ι          | In f<br>fric<br>call<br>The<br>dra<br>on,                     | luids<br>tion is<br>ed drag.<br>e amount of<br>g depends | <ul> <li>The viscosity of the fluid. Thicker fluid = more drag.</li> <li>Speed. Faster objects hit more fluid particles each second = more drag.</li> <li>Object's surface area. The larger the surface area, the more fluid particles it</li> </ul> |                               |                             |                 |  |
| ۲<br>ک     | Thi                                                           | s shows                                                  | nits each sec                                                                                                                                                                                                                                        | cond meaning drag is greater. | 2                           | Newto<br>secono |  |
| Z          | hov<br>ver<br>of a                                            | w the<br>tical speed<br>a parachutist                    | vertical<br>speedims-1 40                                                                                                                                                                                                                            | B                             | 3                           | Impuls          |  |
|            | changes with<br>during the first<br>20 seconds.               |                                                          |                                                                                                                                                                                                                                                      |                               |                             | ey Voo          |  |
| 3          | A                                                             | <u>Uniform</u> acc<br>parachutist i                      | eleration as the on<br>s their weight.                                                                                                                                                                                                               | ly force acting on the        | 1                           | Newto<br>law    |  |
|            | В                                                             | Speed still in<br>drag become                            | creasing but accele<br>es greater at highei                                                                                                                                                                                                          | 2                             | Newto<br>secono             |                 |  |
|            | С                                                             | Uniform spe<br>as weight is                              | ed because resulta<br>balanced exactly by                                                                                                                                                                                                            | 3                             | Newto                       |                 |  |
|            | D                                                             | Parachute ha<br>than weight                              | as been opened, in<br>and he decelerates                                                                                                                                                                                                             |                               | law                         |                 |  |
|            | E                                                             | (Flat section                                            | ). Drag has decrea                                                                                                                                                                                                                                   | 4                             | Termir<br>velocit           |                 |  |
|            |                                                               | 5                                                        | Impuls                                                                                                                                                                                                                                               |                               |                             |                 |  |
| <b>D</b> . |                                                               |                                                          | •                                                                                                                                                                                                                                                    |                               |                             |                 |  |
| Pr         | oje                                                           | ctile mot                                                | tion                                                                                                                                                                                                                                                 |                               | Im                          | pulse           |  |
| Ι          | Horizontal and vertical components of motion are independent. |                                                          |                                                                                                                                                                                                                                                      |                               |                             | Impuls          |  |
| 2          | Res<br>and                                                    | 2                                                        | Impuls                                                                                                                                                                                                                                               |                               |                             |                 |  |
|            | Use<br>SU'                                                    | 3                                                        | From I<br>impact                                                                                                                                                                                                                                     |                               |                             |                 |  |
|            | Use<br>det                                                    | e horizontal co<br>ermine range u                        | Range                                                                                                                                                                                                                                                | 4                             | Eggs ar<br>then e<br>and th |                 |  |
| 3          |                                                               | nen air resistan<br>Reduces the b                        | ice is not ignored in                                                                                                                                                                                                                                | t,<br>educing the range       |                             | Similar         |  |

| Ke | Key Equations          |                                                                                           |  |  |  |  |  |
|----|------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|
| Ι  | SUVAT                  | $v = u + at$ $s = \frac{1}{2}(v + u)t$ $v^{2} = u^{2} + 2as$ $s = ut + \frac{1}{2}at^{2}$ |  |  |  |  |  |
| 2  | Newton's<br>second law | $F = ma = \frac{\Delta(mv)}{\Delta t}$                                                    |  |  |  |  |  |
| 3  | Impulse                | $Impulse = F\Delta t = \Delta(mv)$                                                        |  |  |  |  |  |

### cabulary

| Ι | Newton's first<br>law  | The velocity of an object will not change unless a resultant force acts on it.                                                      |  |  |  |
|---|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 2 | Newton's<br>second law | The acceleration of an object is directly proportional to the resultant force acting on it when the mass of the object is constant. |  |  |  |
| 3 | Newton's third<br>law  | If object A exerts a force on object B, then<br>object B exerts an equal and opposite force on<br>object A.                         |  |  |  |
| 4 | Terminal<br>velocity   | The velocity at which the driving force matches the frictional force.                                                               |  |  |  |
| 5 | Impulse                | The product of force and time.                                                                                                      |  |  |  |

| ctile motion                                                                                                                                                                     |                       | Im | Impulse and Newton's 2 <sup>nd</sup> law                                                                                                                      |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| rizontal and vertical components of motion are independent.                                                                                                                      |                       |    | Impulse equals change in momentum. The units are <b>Ns</b> .                                                                                                  |  |  |
| olve velocity into the vertical horizontal components.                                                                                                                           |                       | 2  | Impulse is given by the <b>area under a force-time graph</b> .                                                                                                |  |  |
| the vertical component and<br>/AT equations (a = g) to work                                                                                                                      | 30° maximum<br>height | 3  | From Newton's 2 <sup>nd</sup> law we can see that to reduce the force of an impact you need to increase the time for the impact.                              |  |  |
| horizontal component to<br>ermine range using d = s x t.                                                                                                                         | Range                 | 4  | Eggs are placed in a container that crumples on impact as the egg is<br>then effectively stopped in a longer distance, hence greater time                     |  |  |
| en air resistance is not ignored i                                                                                                                                               |                       |    | and therefore there is less force on the egg (less likely to break).                                                                                          |  |  |
| Reduces the horizontal speed, reducing the range.<br>If the projectile has a vertical component of velocity, the<br>maximum height is reduced and the angle of descent steepens. |                       |    | Similarly cars have crumple zones to increase the time it takes the car to come to a stop, increasing impact time and decreasing the force on the passengers. |  |  |

| -0   | 0_   |
|------|------|
| Beck | foot |

# Subject: A-level Physics

# **Topic: Mechanics**

Year Group: 12



| Beckfoot                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                          |                                                 |                                                                                                                                   |                                                                                                          |                                                                                                                                       |                                                                                          |                                                                                                                                                      |                                                                                         |                                                                                              |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Momentum and collisions |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                          |                                                 |                                                                                                                                   | Μ                                                                                                        | oments                                                                                                                                |                                                                                          | K                                                                                                                                                    | ey Equatio                                                                              | ns                                                                                           |  |
| I                       | The larger a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n object's mo                                      | mentum, the h                                                                                            | arder it is to                                  | stop.                                                                                                                             | I                                                                                                        | The object on the far right will                                                                                                      |                                                                                          | Ι                                                                                                                                                    | Momentum                                                                                | p = mv                                                                                       |  |
| 2                       | Momentum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | is a vector so                                     | it can be posit                                                                                          | ive and negat                                   | ive.                                                                                                                              |                                                                                                          | topple over because the line of action of its weight falls outside                                                                    |                                                                                          | 2 Work done                                                                                                                                          |                                                                                         | $W = Fs\cos\theta$                                                                           |  |
| 3                       | The principl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e of the                                           | $\xrightarrow{u_1}$                                                                                      |                                                 | <i>u</i> <sub>2</sub>                                                                                                             |                                                                                                          | mass and smaller the base, the more unstable the object.                                                                              | of its base area. The higher the mass and smaller the base, the more unstable the object |                                                                                                                                                      | Power                                                                                   | $P = \frac{E}{t} = \frac{W}{t}$                                                              |  |
|                         | momentum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | says,                                              |                                                                                                          |                                                 |                                                                                                                                   | 2                                                                                                        | Moment (Nm) = force (N) x perp                                                                                                        | endicular between the force and                                                          | 4                                                                                                                                                    | Power                                                                                   | $P = Fv\cos\theta$                                                                           |  |
|                         | $m_1u_1 + m = m_1v_1 + m_1v_1$ | $u_2 u_2$<br>$v_2 v_2$                             | $\xrightarrow{\nu_1}$                                                                                    |                                                 | $\frac{\nu_2}{1}$                                                                                                                 | 3                                                                                                        | turning p<br>In a lever an effort forces acts                                                                                         | point (m)                                                                                | 5                                                                                                                                                    | Kinetic energy                                                                          | $E_K = \frac{1}{2}mv^2$                                                                      |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                          |                                                 |                                                                                                                                   |                                                                                                          | against a load force. Levers<br>create large turning effects by<br>increasing the distance between<br>the effort force and the pivot. |                                                                                          | 6                                                                                                                                                    | Gravitational potential energ                                                           | , $\Delta E_p = mg\Delta h$                                                                  |  |
| 4                       | The conserve<br>when fired.<br>the moment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ation of mom<br>Before it is fir<br>cum of the sys | red the initial m<br>tem must be 0                                                                       | eason an air r<br>omentum is (<br>afterwards to | offle recoils<br>0. Therefore<br>00. The                                                                                          |                                                                                                          |                                                                                                                                       |                                                                                          | 7                                                                                                                                                    | Elastic potentia<br>energy                                                              | $E = \frac{1}{2}k(\Delta L)^2$                                                               |  |
|                         | forward mo<br>opposite in o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mentum gaine<br>direction to tl                    | ed by the pellet<br>he backwards n<br>1                                                                  | is equal in siz<br>nomentum of<br>I             | ze but<br>f the riffle.                                                                                                           | 4                                                                                                        |                                                                                                                                       |                                                                                          | 8                                                                                                                                                    | Efficiency                                                                              | $=\frac{useful\ energy\ out}{total\ energy\ in}=\frac{useful\ power\ out}{total\ power\ in}$ |  |
| 5                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mass                                               | Momentum                                                                                                 | Kinetic<br>energy                               | Total energy                                                                                                                      |                                                                                                          | directions.                                                                                                                           | F                                                                                        | 9                                                                                                                                                    | Moment                                                                                  | Moment = Fd                                                                                  |  |
|                         | Elastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conserved                                          | Conserved                                                                                                | Conserved                                       | Conserved                                                                                                                         | 5                                                                                                        | <b>Moment of a couple</b> - one <b>force × perpendicular</b> distance between the two <b>forces</b> .                                 |                                                                                          | Key Vocabulary                                                                                                                                       |                                                                                         |                                                                                              |  |
|                         | Inelastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conserved                                          | Conserved                                                                                                | conserved                                       | Conserved                                                                                                                         |                                                                                                          | •                                                                                                                                     |                                                                                          |                                                                                                                                                      | Momentum                                                                                | The product of mass and velocity of an object.                                               |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                          |                                                 |                                                                                                                                   | C                                                                                                        | Conservation of energy                                                                                                                |                                                                                          |                                                                                                                                                      | Concernati                                                                              | The total momentum before a collision is the same                                            |  |
|                         | ork and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | power                                              |                                                                                                          |                                                 |                                                                                                                                   | Ι                                                                                                        | Energy cannot be created or destroyed, only transferred.                                                                              |                                                                                          |                                                                                                                                                      | on of<br>momentum                                                                       | as the total momentum after a collision provided<br>no external forces act on the system.    |  |
|                         | W = Fs<br>W = work<br>the move                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | done (J), F =<br><b>ment</b> (N), s                | force <b>that is i</b><br>= distance mov                                                                 | <b>n the same</b><br>red (m).                   | direction as                                                                                                                      | 2                                                                                                        | You may be asked to describe energy transfers in particular situations.                                                               |                                                                                          | 3                                                                                                                                                    | Inelastic<br>collision                                                                  | A collision in which kinetic energy is not                                                   |  |
| 2                       | 2 Here a sledge is moving<br>horizontally. You would need to<br>work out the horizontal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                                                                                                          | 3                                               | <ul> <li>Here as the girl moves from heig<br/>down and back up to H,</li> <li>GPE goes to KE and then to<br/>potential</li> </ul> | elastic                                                                                                  | 4                                                                                                                                     | Conservati<br>on of<br>energy                                                            | Energy cannot be created or destroyed. It can be transferred from one form to another but the total amount of E in a closed system remains constant. |                                                                                         |                                                                                              |  |
|                         | component of F to determine the<br>work down in pulling the sledge.       • Elastic potential the<br>then to GPE         • Energy is lost due                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    | <ul> <li>Elastic potential then goes to<br/>then to GPE</li> <li>Energy is lost due to work d</li> </ul> | bes to KE                                       | 5                                                                                                                                 | Work<br>done                                                                                             | The energy transferred from one form to another when a force causes movement.                                                         |                                                                                          |                                                                                                                                                      |                                                                                         |                                                                                              |  |
| 3                       | 3 More generally, for a force at an angle to the direction of motion,<br>$W = Fs \cos\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | on of motion,                                                                                            |                                                 | <ul> <li>air / trampoline</li> <li>Work done by child (on trampoline)</li> <li>makes up for energy losses</li> </ul>              |                                                                                                          | 6                                                                                                                                     | Moment                                                                                   | The product of the force and the <b>perpendicular distance</b> from the pivot.                                                                       |                                                                                         |                                                                                              |  |
|                         | Where θ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s the angle at                                     | which F acts fro                                                                                         | om the direct                                   | tion of motion.                                                                                                                   | 4                                                                                                        | If a car crashes lots of kinetic en                                                                                                   | ergy is transferred in a short                                                           | 7                                                                                                                                                    | Principle of moments                                                                    | Sum of clockwise moments = sum of anticlockwise moments, for a body in equilibrium.          |  |
| 4                       | The area under a force-displacement graph gives the work done.<br>You need to use this method when the value of F is changing as<br>you cannot use the equation $W = Fs \cos\theta$ in this case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |                                                                                                          | changing as<br>ase.                             |                                                                                                                                   | amount of time. Cars are designed<br>energy into other forms. For exa<br>some of the kinetic energy when | ed to transter some of this kinetic<br>imple, crumple zones absorb<br>they deform.                                                    | 8                                                                                        | Couple                                                                                                                                               | A pair of forces of equal size which act parallel to each other in opposite directions. |                                                                                              |  |