_	ب_قالی Beckfoot	Subject: Chemistry	/	Topic: Amount of Substance 3.1.2	Year C	Group: 12	enjoy learn succeed
Са	alculating moles fro	from mass Combining equations Key Vocabulary					
I	The number of moles (n) of mass (m) by the equation	a substance is related its	Ι	The mass of a substance can be related to the number of partic by the following equation:	cles I	Relative atomic mass (A _r)	The weighted average mass of an atom relative to 1/12th the mass of a carbon atom.
	n = m/Mr where Mr is the relative me	olecular mass.		$\frac{m}{M_{\rm r}} = n = \frac{\text{number of particles}}{L}$	2	Relative molecular mass (M _r)	The weighted average mass of a molecule relative to 1/12th the mass of a carbon atom.
Calculations involving solutions		Calculating moles of a gas The number of moles (n) of a gas is related its volume (V) by the		he 3	Avogradro constant (L) or (N _A)	The number of particles in one mole.	
	The number of moles (n) of a subs concentration (c) by the equation n = cv/1000	f a substance is related its uation		equation $n = V/24000$, where V is the volume in cm ³ .	4	. Mole	The amount of a substance that contains the number of particles equal to the Avogadro constant.
	where c is the concentration volume in cm ³ .	on in moldm ⁻³ and v is the	lde	al gas equation	5	Empirical formula	The simplest whole number ratio of the atoms of each element in a compound.
	If given the volume in dm³, multiplying by 1000.	then convert to cm ³ by		The number of moles in a gas can be found using the equation: PV = nRT	6	, Molecular formula	The actual number of the atoms of each element in a compound.
Avogadro's constant		where p is the pressure in Pascals (Pa), V is the volume in m3, n is the number of moles, R is the gas constant (8.31 JK-1mol-1) and T		n is http://www.ishipted.com/is	Calculating empirical formulae		
1	To calculate the number of number of moles, use the fo Number of particles = L x i	o calculate the number of particles in a particular mber of moles, use the following equation: umber of particles = L x n, where L is Avogadro's		Image: State temperature in Keivin (K). Finding molecular formulae Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temperature in Keivin (K). Image: State temper		er of moles of each element using	
	constant.			Divide the Mr of the compound by the Mr of the empirical		Divide all the m	oles by the lowest number to give er ratio
Conversions		This value is the number of 'empirical formulae' present in the			If any of the values are not whole (e.g. 1:2.5),		
	I litre = 1000 cm3 = 1 dm3	3		molecular formula. E.g. If Mr of molecule is 54 and Mr of empirical	rical	multiply all values by 2 (or 3 etc.).	
	To convert from oC to Kell To convert from cm3 to m3	vin, add 273. 3, divide by 1×106.		formula CH2 is 14, then $54/14 = 4$. We then multiply CH2 by 4 get the molecular formula of C4H8.	to	Note: if given % mass), simply u	5 of each element (as opposed to se the % as the mass value.

Percentage Yield

I	Percentage yield = <u>actual number of moles</u> x100 theoretical number of moles 'Actual number of moles' is sometimes known as 'theoretical number of moles'. 'Yield' is the amount of product obtained.
2	In a reaction involving multiple steps, the overall % yield is calculated by multiplying all of the % yield values from of each step. To do this, convert each % to a decimal, multiply together, and then convert back to a % by multiplying by 100.

Reasons for Low Percentage Yield

- % yield is never 100 % i.e. we never get as much product as is theoretically possible to obtain from the mass of the products. Reasons for this are:
 - Material lost when transferring from one vessel to another (mechanical transfer)
 - Loss during a separating technique (e.g. on filter paper during a filtration)
 - Side reactions
 - Reaction not being complete
 - Reaction being reversible

Atom Economy

Ι	Atom economy is calculated using the following: Atom economy = <u>M_r of desired product</u> x100 Total M _r of all products
2	The atom economy of a reaction is independent of the actual yield of products. The only way to increase the % atom economy is to change the reaction, or by making use of more of the products.
3	Addition reactions have an atom economy of 100% since they result in one product only.

Determining degree of hydration

- Measure mass of hydrated compound.
- Heat to constant mass (thus removing the water).
- Measure mass of anhydrous product.
- Find mass of water by subtracting final mass from initial mass and divide by 18 to get moles of water.
- Use mass and Mr of anhydrous salt to find number of moles.
- Divide moles of water by moles of compound to find whole number ratio of compound: water and therefore the number

Making a Standard Solution

Titration Calculations

- Use n=cv/1000 to find number of moles of substance in burette.
- 2 Use balanced symbol equation to find number of moles of substance in conical flask.
- 3 Use c = 1000n/v to find concentration of substance in conical flask.

Percentage Error

- The % error of a measured is calculated by: % error = <u>error in equipment</u> x100 measured value
- 2 If a burette is used, the value must be multiplied by 2, as a measurement will have been taken at the start, and again at the end.

Exam Tips

If you are ever given the mass of a known substance, immediately work out the number of moles using n=m/Mr.

If you are ever given the concentration and volume of a solution, immediately work out the number of moles using n=cv/1000.

Indicators

Indicator	Phenolphthalein	Methyl orange
Colour in acidic solutions	colourless	red
Colour in neutral solutions	colourless	orange
Colour in alkaline solutions	pink	yellow
Titrations suitable for:	strong acid-strong base weak acid-strong base	strong acid-strong base strong acid-weak base

Back Titrations

Back Titrations

Back titrations are used when a substance does not react easily with an acid or base. In this case, the substance being analysed is reaction with an excess of a strong acid (or base). The excess acid is then titrated as normal with a strong base and an indicator. By knowing how many moles of acid you reacted initially and the number of moles left over to react with the sodium hydroxide, you know how many moles reacted with the substance in question. The molar ratio will then allow the number of moles of the substance to be found.

Performing a Titration