

2

the E isomer.



## **Bonding in alkenes**

Alkenes have at least one carbon-carbon double bond and are said to be unsaturated hydrocarbons, with the general formula  $C_n H_{2n}$ . The double bond gives them a region of high electron density which results in alkenes being much more reactive than alkanes. Alkenes are indicated by the use of the letters 'ene' at the end of the name.

## E-Z isomerism

- Some alkenes display a type of stereoisomerism known as E-Z isomerism. The conditions necessary for this are:
  - A carbon-carbon double bond
  - Both carbons being attached to two different groups

| 2 | E-Z isomerism    |           |           |
|---|------------------|-----------|-----------|
|   | arises due to    | н сн₂сн   | 3 H3C     |
|   | restricted       | `<        | }c==c⟨    |
|   | rotation of      | н н       | н         |
|   | groups about the | but-1-ene | but-2-ene |
|   | double bond.     |           |           |
|   |                  |           |           |

## Identifying E and Z isomers E-Z isomers are named according to the Cahn-Ingold-Prelog (CIP) rules. These allow a priority to be assigned, which is based on atoms with a higher atomic number being given a higher priority. The steps to take are as follows: Look at the two atoms bonded to the first carbon of the double bond. If one has a greater atomic number than the other, then the larger has the greater priority. If both atoms are the same, then consider the atoms these are bonded to, adding together their atomic numbers. If a double bond is present in the group, this counts as two of that atom e.g. a double bond to an oxygen counts as 2 oxygens. Repeat for the second carbon of the double bond. If both groups of highest priority are on the same side, this is the Z isomer, and if on opposite sides of the double bond, this is

| Key Vocabulary |                            |                                                                                               |  |  |  |
|----------------|----------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
| I              | Unsaturated                | A substance containing at least one carbon-<br>carbon double bond.                            |  |  |  |
| 2              | Hydrocarbon                | A compound containing hydrogen and carbon atoms only.                                         |  |  |  |
| 3              | Stereoisomerism            | Compounds with the same structural formula,<br>but a different arrangement of atoms in space. |  |  |  |
| 4              | Electrophile               | An electron-pair acceptor.                                                                    |  |  |  |
| 5              | Addition                   | A reaction where two molecules join to form one molecule only.                                |  |  |  |
| 6              | Monomer                    | The molecule which forms the repeating units of a polymer.                                    |  |  |  |
| 7              | Polymer                    | A long chain molecule formed from many monomers bonded together.                              |  |  |  |
| 8              | Addition<br>polymerisation | The process by which alkenes react with other alkene molecules to form long chain.            |  |  |  |
| 9              | Curly arrow                | Represents the movement of a pair of electrons.                                               |  |  |  |
| 10             | Carbocation                | A species which contains a positive charge on a carbon atom.                                  |  |  |  |
| 11             | Heterolytic<br>Fission     | Occurs when a covalent bond breaks and both electrons move to one of the atoms.               |  |  |  |



H

H

Ĥ.

Ĥ

or n.



| Reactions of alkenes |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A | Addition polymers                                                                                                                                                                                                                                |   | Production and uses of polymers                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| I                    | The carbon-carbon double bond in alkenes is a region of high electron density, and can be attacked by electrophiles, which are electron pair acceptors. An electrophile can be a polar molecule such as H-Br or a neutral molecule such as $Br_2$ , which becomes an electrophile when it approached the C-C double bond and is polarised due to electron repulsion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ι | Alkenes can be reacted together to<br>form long chains known as addition<br>polymers. They are named by placing<br>'poly' at the start of the name of the<br>alkene that was used to make it e.g.<br>propene makes the polymer<br>poly(propene). | I | Addition polymers are generally very unreactive, as they are<br>essentially long alkane molecules with no reactive carbon-carbon<br>double bond. Ethene can be polymerised to make high density<br>polyethene (HDPE) and low density polyethene (LDPE). HDPE is<br>made using a catalyst, has low flexibility and is used for<br>kitchenware, amongst other uses. LDPE is more flexible and is<br>used for plastic bags and some plastic bottles. |  |  |
| Pro                  | oduction of ethanol from ethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 | Equations showing the formation of polymers can be drawn in the manner shown below:                                                                                                                                                              | 2 | Poly(chloroethene) (known as PVC) is a rigid plastic used for<br>plastic window and door frames, and drainpipes. However, a<br>plasticiser (such as a phthalate) can be added which causes the                                                                                                                                                                                                                                                    |  |  |
|                      | Ethanol is a member of the alcohol homologous<br>series, and is used in methylated spirits, as a<br>solvent and in alcoholic drinks. Industrially, it is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 |                                                                                                                                                                                                                                                  |   | polymer to become more flexible, and can then be used for<br>electrical wire insulation, wellington boots and raincoats. The rigid<br>form of PVC is known as uPVC (unplasticised PVC).                                                                                                                                                                                                                                                           |  |  |
|                      | made by the reaction of ethene with steam at a pressure of 60 atm and a temperature of 600 K in a hydration reaction. Concentrated $H_3PO_4$ is used as a catalyst.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | H H H H n<br>ethene<br>(monomer) poly(ethene)                                                                                                                                                                                                    | 3 | The property of a given polymer is dependent upon the strength<br>of the intermolecular forces between polymer chains. In simple<br>polymers such as polyethene, simple van der Waals forces exist                                                                                                                                                                                                                                                |  |  |
| 2                    | $\begin{array}{c} H \\ \hline \\ C = C \\ \hline \\ + H_2O_{(g)} \rightleftharpoons H \\ \hline \\ \\ - C \\ \hline \\ - C \\ - C \\ - O \\ - H \\ \hline \\ - O \\ - H \\ - H \\ - O \\ - O \\ - H \\ - O \\ - O \\ - H \\ - O \\ - O \\ - H \\ - O \\ - H \\ - O \\ - O \\ - H \\ - O \\ - O \\ - H \\ - O \\ - O \\ - H \\ - O \\ - O \\ - O \\ - O \\ - H \\ - O \\ - O \\ - O \\ - H \\ - O \\ - $ |   | When asked to show the formula of a<br>polymer, draw the image on the right<br>side of the equation. When asked to<br>draw a repeating unit, draw the same<br>image, but without the square brackets                                             |   | between chains, resulting in a high flexibility and a low melting<br>point. If electronegative atoms such as chlorine or oxygen are<br>present, permanent dipole-dipole interactions may be present<br>between chains. This would decrease flexibility and increase the<br>melting point of the polymer                                                                                                                                           |  |  |

ent between chains. This would decrease flexibility and increase the melting point of the polymer.



Subject: Chemistry



| El | Electrophilic addition mechanism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | Electrophilic addition mechanism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | Major and Minor Products                                                                                                                                                                                                                                |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ι  | When an alkene reacts with a polar electrophile, a pair of electrons from the double bond moves to the $\delta$ + side of the molecule, and the two electrons of the A-B covalent bond move onto the B atom, forming B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ι | An alkene will react with sulfuric acid. The key here is to think of $H_2SO_4$ as $H$ -OSO <sub>3</sub> H, with H being the $\delta$ + atom, and O being $\delta$ The O– part of the molecule then attacks the carbocation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ι | <ul><li>When an asymmetric alkene reacts with H-X (where X is a halogen), a major and minor product will form.</li><li>This is because the hydrogen atom can initially bond to either carbon of the carbon-carbon double bond.</li></ul>                |  |
| 2  | C = C<br>A = B<br>A | 2 | $H_{3}C$ $CH_{3}$ $C$ | 2 |                                                                                                                                                                                                                                                         |  |
| 3  | This causes the formation of a carbocation, which is quickly attacked by a pair of electrons on B-, forming the final product.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | н—о́о н—о́о                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | H<br>secondary carbocation<br>H<br>CH <sub>2</sub> CH <sub>3</sub><br>H<br>CH <sub>2</sub> CH <sub>3</sub>                                                                                                                                              |  |
| 4  | H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 | Alkenes can react with neutral molecules such as halogens,<br>as the molecule will be polarised by the electron dense<br>double bond. A pair of electrons from the double bond will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | H                                                                                                                                                                                                                                                       |  |
|    | A A B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | then attack the $\delta$ + part of the electrophile. The remainder of the mechanism is the same as those seen above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 | In the above example, the major product is 2-<br>bromobutane. This is the major product because its<br>mechanism involves the formation of a secondary (20)                                                                                             |  |
| 5  | This reaction can be seen in the reaction of but-2-ene and HBr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 | $\begin{array}{c} H_{3}C \\ C \\ H \\ H \\ H \\ H \\ H \\ Br \\ Br \\ Br \\ Br$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | carbocation (a carbocation that is attached to two R<br>groups). 20 carbocations are more stable than Io                                                                                                                                                |  |
| 6  | $\begin{array}{c} H_{3}C \\ \\ \\ H \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | carbocations (attached to one R group), but less<br>stable than 30 carbocations (attached to three R<br>groups). This is because of the inductive effect,<br>whereby the electrons in R groups are 'pushed' into<br>the positively charged carbocation. |  |