Equations		
1	pH	$=-\log \left[\mathrm{H}^{+}\right]$
2	[${ }^{+}$]	$=10 \cdot \mathrm{pH}$
3	K_{w}	$=\left[\mathrm{H}^{+}\right][\mathrm{OH}]$
4	K_{a} (weak acid)	$=\left[\mathrm{H}^{+}\right]^{2} /[\mathrm{HA}]$
5	$K_{\text {a }}$ (buffer)	$=\left[H^{+}\right][\mathrm{A}] \cdot[\mathrm{HA}]$
6	pH	$=p \mathrm{~K}_{\mathrm{a}}$ at half the volume of equivalence point

Equations

Calculating pH		
I	Strong acids	Use $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$ To find $\left[H^{+}\right]$: Monoprotic: $\left[\mathrm{H}^{+}\right]=[$acid $]$ Diprotic: $\left[\mathrm{H}^{+}\right]=[$acid $] \times 2$
2	Strong bases	$\begin{aligned} & \text { Use }\left[\mathrm{H}^{+}\right]=\mathrm{K}_{w}[\mathrm{OH}] \text {, then use } \\ & \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\ & \text {To find }[\mathrm{OH}]: \\ & \text { Monobastic: }[\mathrm{OH}]=[\text { base }] \\ & \text { Dibasic: }\left[\mathrm{OH}^{-}\right]=[\text {base }] \times 2 \end{aligned}$
3	Weak acids	Use $\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(\mathrm{K}_{\mathrm{a}} \times[\mathrm{HA}]\right)$, then use $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$

| Buffers | |
| :--- | :--- | :--- | \left\lvert\, \(\left.\begin{array}{l}Adding

acid\end{array} \begin{array}{l}Additional \mathrm{H}^{+} reacts with \mathrm{A}^{-} in

buffer solution. Equilibrium of

(HA \leftrightharpoons \mathrm{H}^{+}+\mathrm{A}^{-}) shifts to right

hand side, removing additional

\mathrm{H}^{+}\end{array}\right.\right]\)| Adding |
| :--- |
| $\mathbf{\text { alkali }}$OH reacts with H^{+}in buffer
 solution. Equilibrium of (HA
 $\left.\mathrm{H}^{+}+\mathrm{A}^{-}\right)$shifts to left hand side,
 replacing H^{+} |

pH curves and indicators

I	Starting and final pH on pH curve	Can be calculated, but approx. pH I for strong acids, 4 for weak acids, IO for weak bases and I4 for strong bases.
$\mathbf{2}$	Equivalence point	Volume to be calculated, taking stoichiometry of reagents into account
$\mathbf{3}$	Choice of indicator	pH range of colour change of indicator must lie within vertical section of pH curve

Key vocabulary

I	Brønsted- Lowry acid	Proton donor
2	BrønstedLowry base	Proton acceptor
3	Alkali	A soluble base
4	Strong acid	An acid that completely dissociates in aqueous solution
5	Weak acid	An acid that only partially dissociates in aqueous solution
6	Monoprotic	An acid which donates only one proton
7	Diprotic	An acid which donates two protons
8	pH	$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
9	K ${ }_{\text {w }}$	$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14}$ Unit: $\mathrm{dm}^{6} \mathrm{~mol}^{-2}$
10	Neutral	A solution where $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
II	Buffer	A solution whose pH does not change when small amounts of acid or alkali are added
12	Equivalence point	The volume at which pH changes rapidly and shows a vertical inflection in a titration curve
13	End point	The point at which the indicator changes colour during a titration.
14	Indicator	A substance that changes colour depending on pH

