

Re	eactions of Na & Mg with water	Μ	elting point (mpt) trends of oxides	Key Vocabulary			
I	Na reacting with water is significantly more vigorous than Mg reaction with water—sodium produces a faster rate of effervescence but Mg produces very few bubbles, Na melts into a ball	I	Na₂O, MgO, Al₂O₃ = metal oxide that have IONIC bonding and therefore GIANT IONIC LATTICES . Aluminium oxide has ionic bonding with some covalent character. The <i>many strong bonds between oppositely charged ions</i> means the mpt's are	1	Amphoteric	Having both acidic and basic properties. For example, aluminium oxide is an amphoteric oxide. It forms salts both with acids and with alkalis	
	 (releases much more heat) whereas Mg remains the same. The pH of the NaOH solution formed is 12-14 whereas for Mg produces a mildly alkaline solution of pH 9-10. Explanations for the difference in reactions: one electron needs to be lost from sodium whereas 2 electrons need to be lost from Mg to ionise. The second ionisation energy is greater than the first ionisation energy (more energy needed to lose the second electron). Mg forms a lower pH solution in water as magnesium hydroxide is less soluble in water so only a few hydroxide ions are produced. 		high for these oxides.	2	Acid	A substance that donates protons in a reaction	
		2	Why has MgO got a higher mpt than Na ₂ O? Mg forms a 2+ ion whereas Na forms a 1+ ion so the 2+ ion attracts the <i>oxide</i> <i>ion</i> more than the 1+ ion meaning that the ionic bonding is stronger	3	Base	A substance that accepts protons in a reaction	
2				4	Strong acid	An acid that dissociates fully in aqueous solution	
2				5	Weak acid	An acid that does not dissociate fully in water	
		3	 Why has Al₂O₃ got a lower mpt than MgO? The high charge density of the Al³⁺ ion distorts oxygen's electron cloud making the <i>bonds partially covalent</i> SiO₂ = non-metal oxide that has COVALENT bonding & a GIANT COVALENT LATTICE structure. As there are <i>many strong covalent bonds</i>, a lot of energy is needed to break SiO₂ = non-metal oxide that has COVALENT bonding & a GIANT COVALENT LATTICE structure. As there are <i>many strong covalent bonds</i>, a lot of energy is needed to break 				
		4					
2	Equations:		them.	а	n excess of c	excess of oxygen [3]	
	2 Na + 2 H ₂ O ———> 2 NaOH + H ₂	5	P_4O_{10} , SO_2 , SO_3 = Non-metal oxides that have COVALENT	1	Add wat	er to each solid (to get a solution) [1]	
	Mg + 2 $H_2O(I)$ ——-> Mg (OH) ₂ + H_2		weak intermolecular forces between molecules which require	2	Check th Indicato	Check the pH using a pH meter or Universal Indicator [1]	
4	Magnesium reacts more vigorously with steam in the absence of air. The Mg burns with a bright white flame and a white solid is formed	6	 Why does P₄O₁₀ have a higher mpt than SO₂ or SO₃? P₄O₁₀ is a bigger molecule so there are stronger van der Waal's forces between molecules which require more energy to break. 		Na ₂ O giv a pH of 3	ves a pH of 12-14 whereas P ₄ O ₁₀ will give 1-2 with a pH probe [1]	
	(magnesium oxide)				. With Un	iversal Indicator solution, Na_2O will give a	
	$Mg + H_2O(g) > MgO + H_2$						

-00-
Beckfoot

Th	The reaction of oxides with water		Reactions of oxides with acids / bases						
I	 Na₂O, MgO = ionic oxides contain the oxide ion, O²⁻ so when they dissolve in water, the oxide ion accepts protons from the water molecules to form hydroxide ions. They form ALKALINE SOLUTIONS. O²⁻ + H₂O> 2OH⁻ 		General equation		Acid + base ——-> Salt + Water				
			Basic oxides such as Na ₂ O and MgO neutralise acids		Na ₂ O + 2 HCl ——-> 2 NaCl + H ₂ O				
					$MgO + H_2SO_4 > MgSO_4 + H_2O$				
2	Sodium oxide forms sodium hydroxide in water which is much more alkaline (pH 12-14) than the magnesium hydroxide (pH 9-10) that MgO forms. NaOH is <i>more soluble than MgO so produces more</i> <i>hydroxide ions</i> in solution and therefore a higher pH (more alkaline)		Acidic oxides such as SiO ₂ and P ₄ O ₁₀ neutralise bases		$SiO_2 + 2 NaOH> Na_2SiO_3 + H_2O$ (sodium silicate = salt)				
					P_4O_{10} + 12 NaOH ——-> 4 Na₃PO₄ + 6 H ₂ O (sodium phosphate salt)				
3	P_4O_{10} , SO_2 , SO_3 = covalent oxides form ACIDIC SOLUTIONS. They all form hydrogen ions in solution. P_4O_{10} forms phosphoric acid with a				$SO_2 + 2 NaOH> Na_2SO_3 + H_2O$ (sodium sulfite salt)				
					SO ₃ + 2 NaOH ——-> Na ₂ SO ₄ + H ₂ O (sodium sulfate salt)				
	pH of 0-1; SO ₂ forms sulphurous acid / sulfuric (IV) acid with a pH of 2-3 and SO ₃ forms sulfuric (VI) acid with a pH of 0-1.	4	Amphoteric oxides (Al ₂ O ₃) neutralises both acids and bases		$AI_2O_3 + 3 H_2SO_4 \longrightarrow AI_2(SO_4)_3 + 3 H_2O$ (aluminium sulfate salt)				
4	SiO ₂ = Giant covalent structure that is INSOLUBLE in water. We know it is an ACIDIC OXIDE because it reacts with BASES to form salts.				$AI_2O_3 + 2 NaOH + 3 H_2O \longrightarrow 2 NaAl(OH)_4$ (sodium aluminate)				
5	Al_2O_3 = lonic with covalent bonding and is INSOLUBLE in water. It is an AMPHOTERIC OXIDE because it can act as both an acid and a base. Hence, it can react with either an acid or base to make a salt.	<u>EX/</u> alk	AM BULLET POINTS: Explain why Na ₂ O & MgO form aline solutions in water but	EXAM BI magnesi for the d	<u>JLLET POINTS:</u> Compare the reaction of sodium with water & um with water in terms of observations. Give an explanation ifferences [4]				
6	Equations:		SO ₂ & P ₄ O ₁₀ form acidic solutions? [2]	Na forms with wat	s many more bubbles & much more quickly in water than Mg ter (more vigorous) [1]. Sodium forms a yellow flame but Mg does				
	$Na_2O + H_2O > 2 NaOH$	Soc	dium oxide & magnesium	not [1]. S	odium releases so much heat that it melts into a ball but				
	$MgO + H_2O > Mg(OH)_2$	oxi	de are oxides of metals [1]	magnesi	um does not [1]. Sodium forms a solution of pH12-14 but				
	$P4O_{10} + 6 H_2O> 4 H_3PO_4$ $SO_2 + H_2O> H_2SO_3$		ereas sulfur (IV) oxide and	is less vigorous since Mg needs to lose 2 electrons per atom whereas Na only loses one [1]. Secondly, as Mg needs to lose a second electron, the					
			des of non-metals [1]						
	$SO_3 + H_2O > H_2SO_4$			second ionization energy is greater than the first [1]					

The structure of acids & anions: Phosphoric acid

Phosphoric acid is **tetrahedral with a bond angle of 109.5**°. The three hydrogen atoms are acidic as they are bonded to a highly electronegative oxygen atom & so can be donated as H⁺ ions. The structure of the three anions are shown below—they are all tetrahedral with a bond angle of 109.5°.

