	Be	ୁର୍ଗିଥି ckfoot	Subject: Chemis	try		Topic: Carboxylic acids & esters 3.3.9.1	Yea	r Group: 13	enjoy Jearn succeed	
Structure and Properties				Reactions – as typical acids			ł	Key Vocabulary		
Γ	Functional group is called the carboxyl	R—C ^{/O} OH		I	Example with carbonates	$2CH_{3}COOH + Na_{2}CO_{3} \rightarrow 2CH_{3}COONa + CO_{2} + H_{2}O$		Weak acid	An acid that only partially dissociates in water	
	group			2	Example with metals	2CH ₃ COOH + Mg -→ (CH ₃ COO) ₂ Mg + H ₂	2	Plasticiser	An additive (e.g. ester) added to polymers to make them more flexible	
2	Nomenclature	The names are based on the carbon skeleton with the ending changed from – ane to – anoic acid, e.g. HCOOH		3	Example with base	es $CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$		Condensation reaction	A reaction in which water is formed	
		is methanoic acid & CH ₃ COOH is ethanoic acid. Note that the carbo the carboxyl group is always carbo	c acid & CH_3COOH is id. Note that the carbon in I group is always carbon 1	4	With ammonia	CH ₃ COOH + NH ₃ → CH ₃ COONH ₄	4	Trans-esterification reaction	Reacting an ester with an alcohol to produce a different ester & a different alcohol	
3	Weak acids	Only partial form the ca HCOO ⁻ is ca	ly dissociate in water to rboxylate ion, RCOO- so lled methanoate ion &	5	Chemical test for identification	Add sodium carbonate to a solution of the acid, a positive observation would be effervescence		5 Triglyceride	An ester of propane- 1,2,3-triol & 3 fatty acid molecules	
	Salubility.	CH ₃ COO ⁻ is t	the ethanoate ion		Formation of este	Carboxylic acids react with alcohols to in the presence of		Fatty acids	chain carboxylic acids	
4	Solubility	Short chain due to hydr & hydroxyl g	acids very soluble in water ogen bonding of carbonyl groups but as non-polar	D		concentrated sulfuric acid (reflux) to form esters. This is a reversible reaction called esterification / condensation as water is removed – see general reaction below:	7	7 Saturated fatty acids	Do not have a double bond in the hydrocarbon chain	
		solubility de	ecreases			$R_1COOH + R_2OH \leftrightarrows R_1COOR_2 + H_2O$	{	3 Unsaturated fatty	Have at least one C=C	
5	Boiling point (bpt)	Higher than corresponding alcohol as		Esterification equation examples				acius	hydrocarbon chain	
molecules of acid to form a dim Since this doubles the size of th		of acid to form a dimer. Soubles the size of the	Ι	$ CH_3OH + HCOOH \leftrightarrows HCOOCH_3 + H_2O \qquad \text{Ester} = \text{Methyl methanoate}$			Saponification	The process used to make soaps through the alkaline hydrolysis of fats		
		molecule, van der Waal's forces also increase, hence increasing bpt		2	$CH_3CH_2OH + CH_3CH_2COOH \leftrightarrows CH_3CH_2COOCH_3CH_3$ Ester = Ethyl propanoate				to form a mixture of fatty acid salts	

Str	ucture, nami	ng & uses of esters	Formation of a triglyceride (natural ester)				
Ι	Functional group	$R_1 COOR_2$ for example HCOOCH ₂ CH ₃ is called ethyl methanoate	Three fatty acids react with propane-1,2,3-triol to form a $RCOOH$ H_2C-OH H_2C-O-R triester and 3 water molecules are Q				
2	Naming / Nomenclature	An ester is named as an alkyl carboxylate. So the alcohol provides the alkyl part of the name & the carboxylic acid provides the carboxylate part of the name. For example, an ester made <i>from methanol and propanoic acid would be called methyl propanoate</i>	eliminated. Note that as this is an esterification reaction, you need a concentrated H ₂ SO ₄ catalyst $\begin{array}{c} R'COOH + H_{2}C-OH \\ Three \\ fatty acids \end{array}$				
3	Uses	As solvents for organic compounds as they are volatile , as perfumes since they have pleasant scents and food flavourings for the same reason. Also, as plasticisers to make plastics / polymers more flexible	Formation of biodiesel				
4	Natural esters	These are vegetable oils and fats – <i>esters of propane-1,2,3-triol (glycerol) & a long chain carboxylic acid called a fatty acid</i> . These fats are formed by a condensation reaction & since there are 3 hydroxyl groups in the alcohol, the triglyceride formed has 3 ester linkages, with the removal of 3 H ₂ O molecules in the formation reaction	A trans-esterification O O reaction where a triglyceride \parallel \parallel is reacted with methanol in \square \square the presence of a KOH \bigcirc \bigcirc catalyst. The reaction \square				
Ну	drolysis of e	sters	produces a mixture of methyl esters of fatty acids which is called biodiesel. The glycerol I 0 I				
1	What is it?	The reverse of esterification where you split the ester with water and heat, catalysed by either dilute acid or alkali	by-product can be used in cosmetics as a moisturiser. triglyceride methanol mixture of fatty esters glycerol				
2	Acid hydrolysis	Reversible / equilibrium reaction where the acid & alcohol are formed. Achieved by heating under reflux with dilute acid / alkali. Example:	Formation of soap (saponification)				
3	Alkaline hydrolysis	Reaction goes to completion and is quicker than acid hydrolysis. Products are alcohol and salt of carboxylic acid and achieved by heating under reflux with NaOH. To get the free acid from the salt, react with HCl or any dilute acid. This is the basis of how soaps are made using triglycerides. Example: $CH_3COOCH_3 + NaOH \rightarrow CH_3COONa + CH_3OH$ $CH_3COONa + HCl \rightarrow CH_3COOH + NaCl$	Alkaline hydrolysis of fats using hot alkali such as NaOH under reflux. The mixture of salts of the fatty acids are called soaps. The glycerol formed is a useful by-product used in cosmetics for example. $CH_2 - O - C_{R_1}$ $CH_2 - OH$ $CH_2 - OH$ 				