Subject: Chemistry
Topic: Carboxylic acids \& esters 3.3.9.I \quad Year Group: I3

Structure and Properties

I	Functional group is called the carboxyl group...	
$\mathbf{2}$	Nomenclature	The names are based on the carbon skeleton with the ending changed from -ane to -anoic acid, e.g. HCOOH is methanoic acid \& $\mathrm{CH}_{3} \mathrm{COOH}$ is ethanoic acid. Note that the carbon in the carboxyl group is always carbon 1
$\mathbf{3}$	Weak acids	Only partially dissociate in water to form the carboxylate ion, RCOO- so
CH3COO is the ethanoate ion		

Reactions - as typical acids

I	Example with carbonates	$2 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
2	Example with metals	$2 \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{Mg} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg}+\mathrm{H}_{2}$
3	Example with bases	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
4	With ammonia	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{COONH}_{4}$
5	Chemical test for identification	Add sodium carbonate to a solution of the acid, a positive observation would be effervescence
6	Formation of esters	Carboxylic acids react with alcohols to in the presence of concentrated sulfuric acid (reflux) to form esters. This is a reversible reaction called esterification / condensation as water is removed - see general reaction below: $\mathrm{R}_{1} \mathrm{COOH}+\mathrm{R}_{2} \mathrm{OH} \leftrightarrows \mathrm{R}_{1} \mathrm{COOR}_{2}+\mathrm{H}_{2} \mathrm{O}$

Esterification equation examples

I	$\mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCOOH} \leftrightarrows \mathrm{HCOOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$	Ester = Methyl methanoate
2	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \leftrightarrows \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3} \mathrm{CH}_{3}$	Ester = Ethyl propanoate

Key Vocabulary

I	Weak acid	An acid that only partially dissociates in water
$\mathbf{2}$	Plasticiser	An additive (e.g. ester) added to polymers to make them more flexible
$\mathbf{3}$	Condensation reaction	A reaction in which water is formed

4 ($\begin{gathered}\text { Trans-esterification } \\ \text { reaction }\end{gathered} \quad \begin{gathered}\text { Reacting an ester with an } \\ \text { alcohol to produce a }\end{gathered}$ different ester \& a different alcohol

5	Triglyceride	An ester of propane- $1,2,3$-triol \& 3 fatty acid molecules
6	Fatty acids	Naturally occurring long chain carboxylic acids
$\mathbf{7}$	Saturated fatty acids	Do not have a double bond in the hydrocarbon chain
$\mathbf{8}$	Unsaturated fatty acids	Have at least one C=C double bond in the hydrocarbon chain
9	Saponification	The process used to make soaps through the alkaline hydrolysis of fats to form a mixture of fatty acid salts

Subject: Chemistry
Topic: Carboxylic acids \& esters 3.3.9.I
Year Group: 13
enjoy Beckfoot

Structure, naming \& uses of esters

I	Functional group	R $\mathbf{R}_{1} \mathbf{C O O R}$ for example $\mathrm{HCOOCH}_{2} \mathrm{CH}_{3}$ is called ethyl methanoate
$\mathbf{2}$	Naming / Nomenclature	An ester is named as an alkyl carboxylate. So the alcohol provides the alkyl part of the name \& the carboxylic acid provides the carboxylate part of the name. For example, an ester made from methanol and propanoic acid would be called methyl propanoate
$\mathbf{3}$	Uses	As solvents for organic compounds as they are volatile, as perfumes since they have pleasant scents and food flavourings for the same reason. Also, as plasticisers to make plastics / polymers more flexible
$\mathbf{4}$	Natural esters	These are vegetable oils and fats - esters of propane-1,2,3-triol (glycerol) \& a long chain carboxylic caid called a fatty acid. These fats are formed by a condensation reaction \& since there are 3 hydroxyl groups in the alcohol, the triglyceride formed has 3 ester linkages, with the removal of $3 \mathrm{H}_{2} \mathrm{O}$ molecules in the formation reaction

Hydrolysis of esters

I	What is it?	The reverse of esterification where you split the ester with water and heat, catalysed by either dilute acid or alkali
$\mathbf{2}$	Acid hydrolysis	Reversible / equilibrium reaction where the acid \& alcohol are formed. Achieved by heating under reflux with dilute acid / alkali. Example: $\mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{OH}$
$\mathbf{3}$	Alkaline hydrolysis	Reaction goes to completion and is quicker than acid hydrolysis. Products are alcohol and salt of carboxylic acid and achieved by heating under reflux with NaOH. To get the free acid from the salt, react with HCl or any dilute acid. This is the basis of how soaps are made using triglycerides. Example: $\mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{CH}_{3} \mathrm{OH}$ $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{HCl} \rightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaCl}$

Formation of a triglyceride (natural ester)

Three fatty acids react with propane-I,2,3-triol to form a triester and 3 water molecules are eliminated. Note that as this is an esterification reaction, you need a concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ catalyst

Formation of biodiesel

A trans-esterification

 reaction where a triglyceride is reacted with methanol in the presence of a KOH catalyst. The reaction produces a mixture of methyl esters of fatty acids which is called biodiesel. The glycerol by-product can be used in cosmetics as a moisturiser.

Formation of soap (saponification)

Alkaline hydrolysis of fats using hot alkali such as NaOH under reflux. The mixture of salts of the fatty acids are called soaps. The glycerol formed is a useful by-product used in cosmetics for example.

