-00-
Beckfoot

Topic: Aromatic Chemistry 3.3.10

Year Group: 13

Nomenclature / Naming Examples of aromatic compounds & their names We name singly substituted benzene as prefix benzene We name doubly substituted benzene using rules, *i*) 2 prefixes listed in alphabetical order, ii) we use CH3-CH2-CH2-CH3 smallest numbers possible Name multiple substituted benzene using same rules 3 phenylamine and use *di-, tri- prefixes* (aniline) When naming molecules where benzene is not the 2-phenylbutane 4 focus e.g. higher priority groups / alkyl chain > 6 C long we use *phenyl*- before the main functional group Functional groups, then alkanes are given priority & 5 must have lowest numbers henviethene henviethanone Halogens & nitro groups are not considered functional 6 groups in aromatics

Kekulé's early benzene model

This is a hypothetical compound structure Kekulé came up with, called Cyclohex-1,3,5triene. However, several pieces of evidence did not match this model. See separate box.

Key Vocabulary								
Ι	Aromatic Compound	A compound which contains a benzene ring						
2	Arene	A species containing at least one benzene ring						
3	Aryl group	An aromatic group such as C ₆ H ₅ -						
4	Delocalised	Electrons are free to move from atom to atom e.g. in benzene ring						
5	Electrophile	An electron-deficient species that can accept a lone pair of electrons						
6	Hydrogenation	A reaction in which hydrogen is added to a compound						
7	Nitration	A nitro group (NO ₂) replaces one of the hydrogen atoms						

Accepted current model of benzene

Benzene is often drawn as a hexagon with a ring inside it to denote the ring of delocalised electrons. Benzene is still depicted as Kekulé's structure too but note that there are **no C=C** bonds in benzene.

Benzene is a planar, six carbon cyclical ring with the formula $C_{\delta}H_{\delta}$. All six carbon atoms lie in the same plane and it is non-polar due to being a hydrocarbon. Additionally, all carbon to carbon bonds are the same length, intermediate between the length of a single & double bond.

B	eckfoot	Subj	ect: Chemistry	Topic:Arc	omatic Chemistry 3.3.10		Year Gro	oup:	13		enjoy learn succeed
Evidence against Kekulé's model of benzene					Why does benzene undergo			Key Vocabulary			
8 	His model d	actua epicts	Ctual structure of benzene victs This means the benzene molecule would not be a symmetrical structure as single bonds are		electrophilic substitution & not addition reactions?			6	Acylation	The process of replacing a hydrogen atom in certain molecules by an acyl group	
	which are shorter than single bonds		longer than double bonds. However, actual benzene is a symmetrical structure		Each carbon atom in the benzene ring has one electron not localised in a bond, the p orbitals of each carbon atom overlap to form a ring of delocalised electrons above & below the plane of the molecule.			7	Enthalpy change, ΔH	The heat e reaction oc	(RCO-) nergy change in a curring at constant
2	The test for alkenes	r	Benzene does not decolourise brom it has 3 C=C bonds, it should readily	nine water, if do so	2 This ring of delocalized electrons makes benzene more stable and would be destroyed if addition reactions ensued			8	Catalyst	A substance	that alters the rate
3	The standard enthalpy of bydrogenation		The enthalpy of hydrogenation of cyclohexene is -120 kJ mol ⁻¹ so cyclohex-1,3,5-triene should		Substitution reactions allow new atoms to be substituted on to the ring with the removal of a H atom, hence the ring of					itself being changed by the reaction	
	of cyclohex 1,3,5-triene should be 3 times that cyclohexen	have an enthalpy of 3 x -120 = -3 have an enthalpy of 3 x -120 = -3 However, benzene has an enthal hydrogenation of -208 kJ mol ⁻¹ , mol ⁻¹ less exothermic than expen- be attributed to the <i>extra stabilit</i> <i>the molecule due to ring of delo</i>	J60 kJ mol ⁻¹ . Ipy of this is 152 kJ	delocalized electrons, & therefore the stability, is maintained. Reactions of benzene: Electrophilic Substitution							
			be attributed to the <i>extra stabilty o</i> the molecule due to ring of delocal	conferred to	Nitration			Friedel-Crafts Acylation			
	A. J. 1949		electrons.		Electrophile = Nitroni	um ion, NO₂ +	Electrophile = Acylium ion, RCO ⁺				
4 A su re	substitutio reactions	ersus n	If Kekulé's model of benzene being identical to cyclohexa-1,3,5-triene was correct then it would undergo electrophilic addition reactions . However, it does not decolourise	Importance = Synthes converted to aromatic synthesis of azo-dyes	is of TNT (explosives) & amines which are used in the	Importance = Organic synthesis as this reaction adds an extra carbon on to the benzene ring. Used in production of plastics, detergents & petrol				n adds an extra tion of plastics,	
			bromine water and therefore undergo addition reactions, in fact actual benzene undergoes		Reagents = concentra H ₂ SO ₄	ted HNO ₃ & concentrated	Reagents = Acyl chloride or acid anhydride				
		electrophilic substitution reaction		ions.	Conditions = 50°C to p nitro group on benzen	prevent further substitution of le ring	Conditions =	itions = Catalyst AICl ₃			

