

Subject: Chemistry

Topic: Aldehydes & Ketones 3.3.8 Year Group: 13

Synthesis			Key features & characteristics				Key Vocabulary			
I	Method for making an	An aldehyde is made when a primary alcohol is oxidised using acidified potassium dichromate (distillation). It is	1	Structure	Aldehydes have the functional group R-CHO and ketones RCOR'.	1		Compounds that contain the carbonyl functional group (C=O). For example, aldehydes and ketones. The position of the group is		
	aldehyde	necessary to immediately distill off the aldehyde at its boiling point so that it does not fully oxidise to form a carboxylic acid	2Functional group Isomerism3Positional isomerism4Chemical tests to distinguish between aldehydes & ketones		Aldehydes and ketones are functional group isomers of each other. This means they have the same molecular formula but different structural formulas.			different in aldehydes and ketones		
						2	Aldehyde	Compound containing the carbonyl group at the end of the carbon chain. Their names end		
2	Example of making	Oxidation of primary alcohol to aldehyde , e.g. methanol to methanal		isomerism Chemical tests to distinguish between aldehydes	Some ketones may have positional isomerism of		Aldeliyde	in –al (RCHO). The C of the CHO group is carbon atom number 1		
	an aldehyde	$CH_3OH + [O] \longrightarrow HCHO + H_2O$			the functional group—the pentanones are the first ketones to exhibit positional isomerism as pentan-2-one & pentan-3-one exist Use Tollens' reagent (contains [Ag(NH ₃) ₂]+ and heat in a water bath. An aldehyde will form a silver mirror but a ketone will show no colour change.	3	Ketones	Compound containing the carbonyl group in the middle of the carbon chain. Their names end in –one, & often have a number to show which carbon the carbonyl group is on (RCOR')		
3	Method for making a	A ketone is made when a secondary alcohol is oxidised using excess acidified potassium dichromate (reflux). Acidified potassium dichromate is itself reduced in the reaction (oxidising agent) so there will be a colour change from orange to green.								
	ketone						Nucleophilic addition	When a nucleophile attacks a molecule and adds itself as an extra group		
4	Example of making a ketone	Oxidation of secondary alcohol to ketone , e.g. propan-2-ol to propanone $CH_3C(OH)HCH_3 + [O] -> CH_3COCH_3 + H_2O$		The Ag+ ions are reduced to Ag metal and the aldehyde is oxidised to a carboxylic acid. Alternatively, add Fehling's solution (contains Cu ²⁺ in alkaline solution) and heat in a water	5	Nucleophile	e A species that is a lone pair donor			
5	What about tertiary alcohols?	Note that tertiary alcohols are resistant to oxidation with acidified potassium dichromate			bath. An aldehyde will form an orange-red precipitate but there will be no observable change with a ketone.	6	Polar	A covalent bond between 2 atoms where the pair of electrons are shared unequally due to a		
6	Reduction half equation	$Cr_2O_7^{2-} + 14 H^+ + 6 e^ \rightarrow 2 Cr^{3+} + 7 H_2O$			The Cu ²⁺ ions are reduced to Cu + ions and the aldehyde is oxidised to a carboxylic acid: RCHO + [O] ——> RCOOH			difference in electronegativity		

ہے۔ Bec	kfoot Subject:	Chemistry	Topic:Aldehydes & Ketor	es Year Group: 13			Reactions & Mechanisms		
Ma	king carboxylic	acids from an aldel	nyde	Why do nucleophiles attack			Ι	Aldehydes & ketones both undergo NUCLEOPHILIC ADDITION	
	Method to convert aldehyde to carboxylic a	cid dichromate and reflux or o	y alcohol using excess acidified potassium kidise an aldehyde with Tollens' reagent or produce the corresponding carboxylic acid		aldehydes & ketones? I The carbonyl group is planar		2	mechanismsThis is because the C=O (carbonyl)bond is polar due to oxygen having agreater electronegativity compared tocarbon. This means the electrondeficient carbon atom is susceptibleto attack by a nucleophile.	
2	Example equation	CH ₃ CHO + [O]→ CH ₃ CHO + [O]	CH ₃ CHO + [O] $\dots \rightarrow$ CH ₃ COOH [O] represents oxidising agent			the carbonyl group			
3	Example half-equation	$CH_3CH_2OH + H_2O> C$	H ₃ COOH + 4H ⁺ + 4e ⁻		with equal probability from above and below				
Νι	icleophilc addit	ion (reduction)		formed (racemate).			3	This is an addition reaction because the double C=O bond opens up to add	
1	Reagent & conditions	Sodium tetrahydridoborate (III) (NaBH ₄) in aqueous methanol	4 The racemate has no effect light as each enantiomer r			the nucleophile into the molecule.		
2	Nucleophile	The nucleophile is the hydride ion (H ⁻)			plane polarised light in opposite directions but by equal amounts so that there is no overall		4	There are 2 reactions to remember: a) REDUCTION using NaBH ₄ to make	
3	Products		n it's corresponding PRIMARY ALCOHOL rm its corresponding SECONDARY ALCOHOL		effect (optically inactive).			alcohols and b) reaction with KCN to make a hydroxynitrile	
4	Example	CH ₃ CH ₂ COCH ₃ + 2[H] -	\rightarrow CH ₃ CH ₂ CH(OH)CH ₃	Nucleophilic addition (with KCN)					
5	Mechanism examples with ethanal and propanone	$H_{3}C - C \rightarrow H$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	alco nucl proc HY is no gas a toxic proc reac	Ax with aqueous holic KCN. The eophile is CN ⁻ . The duct is a DROXYNITILE. HCN ot usually used as it is a and toxic. KCN is also c and as HCN is duced <i>in situ</i> , the tion should be carried in a fume cupboard.	$CH_3 - C = CH_3$ $CH_3 - C = CH_3$ $H^{-1} - C = CH_3$ $H^{-1} - C = CH_3$ $H^{-1} - C = CH_3$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	