

Subject: Chemistry

E	Enthalpy Change		Calorimetry			ey Vocabulary		
I	Enthalpy change (Δ H) is the heat energy change measured under conditions of constant pressure.		Experiments that measure the heat given out in a reaction are called calorimetry experiments.		e	Standard Enthalpy change when I r enthalpy of is formed from its elemer formation states under standard cor	nts in their standard	
2	Standard enthalpy changes refer to standard conditions ie100 kPa and a stated temperature (eg ΔH_{298}^{Θ}).	2	The equation for enthalpy change is: q = mc Δ T		(Δ _f H ^θ)		
3	Exothermic reaction release energy into the surroundings so the temperature increases. The products have less energy than the reactants so ΔH is negative.		Where q is the heat lost or gained (J), m is the mass of the water in combustion reactions or solution (g), c is the specific heat capacity of the water (4.18 J g ⁻¹ K ⁻¹) or solution and Δ T is the change in temperature of the water or solution (K).		c (enthalpy of is completely burned in o standard conditions with $\Delta_c H^{\Theta}$) products in their standard	y of is completely burned in oxygen under tion standard conditions with all reactants and products in their standard states.	
4	Endothermic reaction take in energy from the surroundings so the temperature decreases. The products have more energy than the reactants so ΔH is positive.	3	 To calculate the enthalpy change of a reaction: I. Calculate q then convert from J to kJ. 2. Calculate the number of moles. If combustion, 	1		Hess's Law The total enthalpy change independent of the route	e for a reaction is	
В	Bond Enthalpy		calculate moles of fuel using n=m/Mr where m is the mass of fuel burnt. If solution, use n=cv.	٦	Fe r	emperature change from graph		
	Atoms in molecules are held together by strong covalent bonds. It takes energy to break them (endothermic) and energy is released when they are made (exothermic).	4	3. Calculate the enthalpy change in kJ mol ⁻¹ using $\Delta H=q/n$.			You can use a graph to find an accurate temperature change for a reaction. You need to extend both lines on the graph		
2	If more energy is needed to break the bonds in a reaction then ΔH is positive and if more energy is needed to make the bonds		A temperature increase shows an exothermic reaction so the enthalpy change must be negative.	2	2	so they pass through when the reaction started. The distance between the 2		
3	then ΔH is negative. In calculations, a mean bond enthalpy is used which is the	Ρ	roblems with Calorimetry			Q ⁴⁰ * * *	lines at the point the reaction	
	average energy needed to break a certain type of bond in a range of compounds.		Heat is always lost to the surrounding during the experiment which can make calculated value inaccurate.			ΔT × × × × × × × × × × × × × × × × × × ×	started is the accurate temperature change (Δ T).	
4	Enthalpy change of reaction Total energy absorbed to break the bonds Total energy released when bonds are formed	2	Combustion may be incomplete which means less energy is given out and calculated value is inaccurate.			$20 \xrightarrow{2} 20 \xrightarrow{1} 2 \xrightarrow{3} 4 \xrightarrow{5} 6$ $Time (min)$		

