

Functional Group Tests				Mass Spectrometry						
Functional Group		Test Procedure	Positive Result	I	Determining the M _r of compounds		1.	1. The first species formed is called the molecular ion [M] ⁺		
I	1° alcohol	Distil with potassium dichromate(VI)	Orange to green colour change				2.	The signal for the compound	or [M] ⁺ gives the M _r of Ind	
2	2° alcohol	Reflux with acidified potassium dichromate(VI)	Orange to green colour change	2	Low resolution M _r	High resolution M _r	Molec	ular formula	Possible molecules	
3	3° alcohol	Distil with potassium dichromate(VI)	No change		60	60.0211		C ₂ H ₄ O ₂	CH₃COOH HCOOCH₃	
4	Aldehyde	 Warm with Fehling's or Benedict's reagent Warm with Tollens' reagent 	 Brick red precipitate forms Silver mirror forms on the side of the test tube 		60	60.0324	(CH ₄ N ₂ O	H ₂ NCOONH ₂	
5	Ketone	 Warm with Fehling's or Benedict's reagent Warm with Tollens' reagent 	1) Stays blue 2) Stays colourless	3	High Resolution w	lass spectrometry	2.	inteasures to enough acci molecular fo If the Mr of measured to places, it giv	ne m/z values to uracy to find the ormula a compound is o several decimal ves a unique molecular	
6	Alkene	Shake with bromine water	Orange to colourless colour change				3.	formula Where ther compound molecular fo	e is more than one with the same ormula, this technique	
7	Carboxylic acid	Add a spatula of solid sodium carbonate, bubble through limewater	Fizzing and turns limewater cloudy					cannot be u compounds	sed to identify the	

Infra	Infrared Spectroscopy							
I	The basics	A beam of IR radiation is passed through a sample The covalent bonds in the molecules absorb the radiation, increasing their vibrational energy Bonds a) between different atoms and b) in different places absorb different frequencies						
2	The fingerprint region) Below 1500 cm-1) Unique to a particular compound) An IR spectrum from an unknown can be compared with the IR spectra from known compounds using a database						
3	The IR Spectrum	1) Above 1500 cm-1 2) Characteristic peaks Functional Groups (above 1500 cm ⁻¹) -H (alcohol) 230-3650 cm ⁻¹ 2500-3000 cm ⁻¹ -H (alcohol) 230-3650 cm ⁻¹ 2500-3000 cm ⁻¹ -H (alcohol) 200 200 1500 1000 500						
4	Global warming	 The Sun emits mainly UV/visible radiation This is absorbed by Earth's surface and re-emitted as IR radiation Greenhouse gases have bonds that are good at absorbing infrared energy The more IR radiation a molecule absorbs, the more effective a greenhouse gas it is 						