-00-		Subject: Biology	ubject: Biology Topic: Organisms response to changes in their internal and e									Year Group: 13	enjoy learn succeed	
Be	ckfoot	· · ·		Со	Control of heart rate									
Simple responses – aid survival of a species				Heart is Contraction is ir				ed from within the	Rey	ey Vocabulary				
Ι	Taxis	A simple response whose direction is determined			myogenic	muscle itself (not from nervous system).				Stimulus	A detectable change in the internal or external		al or external	
•		by the direction of the stimul		2	SAN → AVN →			node sends out waves of			environment of an organism			
2	Kinesis		on-directional response to a stimulus which gs about increased random movements			wall causing con	ntracti	he left & right atrial ion. waves are then	2	Response	The result of a stimulus on an organism		anism	
3	Tropism	response to a directional stin	oowth movement of a part of a plant in oonse to a directional stimulus - Indoleacetic			passed onto the atrioventricular node, then to the bundle of His, with a slight delay. The		3	Receptor	A cell or organ which detects a stimulus				
		acid (IAA) causes elongation of shoot cells, while it also inhibits root cell elongation in order to					plits into the Purkynge contraction of the left & right the bottom up.		4	Effector	A cell, tissue, organ or system which responds to a stimulus			
	Deflesses	cause positive geotropism (to gravity) & phototropism (to light)flexesRapid responses that don't require conscious thought. Reflexes can quickly protect the body from harm, as it does not involve many synapses, they use simple mechanisms and are localized to the part of the body where they occur.			3 Medulla oblongata Found in the autonomic nervous system – controls impulses to SAN. 4 Receptors Baroreceptors detect changes in blood			mic nervous system –	5	Coordinator	The link between a sensory neurone and motor neurone in the spinal cord			
4	Kellexes							6	Autonomic	A division of the motor nervous system which carries nerve impulses to glands, smooth and cardiac muscle and is not under voluntary control (subconscious)				
Receptors					Line and				7	Sympathetic	An autonomic pathway which stimulates effectors and so speeds up an activity (e.g.			
I	Pacinian corpuscle Detect changes in pressure in the skin. Inc deformation of the concentric rings of the stretch-mediated sodium channels in the sensory neuron causing a generator poter			e Pacinian corpuscle, opening				equired Practical	8	Parasympathetic	heart rate) using noradrenaline An autonomic pathway which inhibits effectors and so slows down an activity using acetylcholine			
_	The measure	potential.	potential.				- 1	Investigation into the effect of an	9	Retinal convergence	Many rods connected to one bipolar cell		lar cell	
2	The retir	· · ·			pectrum. High visual sensitivity.			environmental variable e.g. light on	10	Visual acuity	Ability to resolve fine detail			
3		Use the pigment rho edge of the retina (no	Use the pigment rhodopsin. More abunda edge of the retina (not in fovea). Show ret			Located on the		the movement of an animal using either a choice chamber or a	11	Visual sensitivity	Ability to detect low light intensity			
	Bind spot Photoreo	visual acuity.						maze. The half in the light in the light	12	Fovea	I .	oint receives the highest inte	, e	
4	Cone ce	Cone cells Three different types (detect red, blue an vision. Use the pigment iodopsin. Found a each bipolar cell. Have good visual acuity.						This half is lead on ability and social without the social social soc				use light focuses on it by the oint of entry of the optic ner		
								The bird is born dream with colors would	13	Blind spot	The p retina			

,	Beckfoot Subject: Biology Topic: Organisms response to changes in their internal and external environment Year Group: 13									
Syna	ipses – gap between	2 neurones	Motor neurones and myelination				Key Vocabulary			
1 2	Cholinergic synapse Transmission across a synapse	Uses acetylcholine as its neurotransmitter. An action potential arrives at the pre-synaptic knob, depolarising the membrane and causes	ا	Structure	Cell body – contains nucleus, cytoplasm and the cell membrane forms dendrites which connect to other neurones		Resting potential	A potential difference of -65mV found inside a resting neurone relative to its outside, which results in the axon being polarised.		
i oformati communication Action Proter		voltage-gated calcium ion channels to open. The influx of Ca2+ ions causes the synaptic vesicles to fuse with the membrane, releasing the neurotransmitter into the synaptic cleft. The neurotransmitter diffuses and binds receptors on the post synaptic		endrite Schwarth cell (Myelin Schwart) Anon Nocles of Ranvier H. Ason F. Reminals	Axon – long extension of neurone Schwann cells – surround the axon to form the myelin sheath. Nodes of ranvier – gaps in myelin sheath	2	Generator potential	A nervous impulse produced by a sensory receptor following transduction (or conversion) of one form of energy into electrical energy		
: -	Acetylcholinesterase	membrane, causing an action potential. Breaks down acetylcholine in the cleft. This			Axon terminals – connect neurones	3	Threshold value	The minimum level of stimulus needed to trigger an action potential		
3		allows it to be recycled and reused.		Importance of	Increases conduction speed, as well as wider axons or warmer	4	Polarised	Condition used to describe the axon when		
4	Excitatory or inhibitory synapses	If the neurotransmitter opens Na+ channels (excitatory) or if it opens chloride or potassium channels causing hyperpolarization (inhibitory)	3	myelination Saltatory conduction	temperatures. Action potentials only occur at Nodes so faster transmission.			the inside of an axon is negatively charged relative to the outside (at the resting potential usually around -65mV).		
Act	on potentials					5	Voltage gated channels	Channels in the axon membrane which change shape, and hence open or close,		
	Definition	A temporary reversal of the charges across the ax +40mV, depolarising the membrane	orary reversal of the charges across the axon membrane which increase from -65mV to depolarising the membrane					depending on the voltage across the membrane.		
2	Process	After voltage-gated sodium ion channels close, and repolarization occurs as K+ ions leave the cell. Ou	causing depolarisation. If this depolarisation gated sodium channels causing an action potential. voltage-gated potassium channels open, tward			Depolarised	Condition used to describe when the inside of the membrane has a positive charge of around +40mV (when an action potential is happening).			
	diffusion of K+ ions causes hyperpolarisation and the Sodium-potassium pump returns the cell to t			d the voltage-gated potassium channels close. Finally, the resting membrane potential.			Hyperpolarisation	When the inside of the axon is more		
3	Refractory period Time period after an action potential when it is in generated because inward movement of sodium			npossible for a further action potential to be ons is prevented because the sodium voltage-gated				negative (relative to the outside) than the usual.		
4	All-or-nothing principle	channels are closed. An action potential is exactly the same size, regard the threshold value.	dles	s of the size of	8	Repolarisation	When the resting potential of -65mV is re- established the axon is described as this.			

୍ମ ସିଥିଲ୍ Beckfoot		Subject: Biology		Topic: Organisms response to changes in their inter environment							.	Year Group: 13	enjoy learn succeed	
Neu	iromuscula	r junction (N	r junction (NJ) and the Sarcomere			Types of skeletal muscle				Key Vocabulary				
I	Synapse vs junction	napse vs neuromuscular - NJ can only be excitatory ction - NJ link a neurone to a muscle		I	Slow twitch	 Used for endurance Contract slowly an 		I	Myofibrils (muscle fibres)	A microscopic muscle fibre containing sarcoplasm and showing striped isotropic and anisotropic bands of actin and myosin.		ed isotropic		
Ca* i chann		synaptic Region - Mitochondria		rather than to another neurone Action potential ends at NJ			longerFatigue slowlyCarry out aerobic	respiration	2	A Band	Ansiotropic bands (d <u>a</u> rk) where thick and thin filaments overlap.			
1	NE -	- Vesicles containing Acetycholine Motor neurone Neuromuscular Junction	- Only motor neurones used				Have lots of mitoclLots of myoglobin	hondria	3	l Band	Isotropic bands (light) where thick and thi filaments do not overlap.		thick and thin	
2 Sarcolemma		keletal muscle fibre	- NJ always use acetylcholine This is the name of the membrane o the neuromuscular junction with the				Small glycogen/phosphoc stores	reatine	4	H zone	The centre of each A-band where there is lighter-coloured region		nere there is a	
	Sancomonos			ceptors for the acetylcholine.		Fast twitch	 Dark colour Used for short bur 	sts of	5	Z line	The ce	entre of each I-band.		
3		Bundle of fibres-Muscle fibre		2		 activity. Light colour In all other aspects exactly the <u>opposit</u> twitch 	they are	6	Myoglobin	and st struct	protein containing haen tores oxygen in muscle c turally similar to a subun loglobin.	ells. It is		
					Contraction of skeletal muscle – sliding filament theory									
	What are they? Muscles contain fibres called myofibrils. Each myofibril is made lots of smaller contracting units ca sarcomeres.		contain fibres called s. Each myofibril is made of naller contracting units called	An action calcium tropom				w is it initiated? action potential travels into the muscle fibre via T tubules, causing release of cium ions from the sarcoplasmic reticulum. The calcium ions bind to troponin on pomyosin molecules and cause them to move, exposing the myosin binding site the actin filament. Myosin attaches to actin forming a actin-myosin cross-bridge. hy do muscles shorten during contraction? P hydrolyses to detach the myosin head, allowing reattachment at a further site. is cycle continues, causing sarcomeres to shorten. hat happens when nervous stimulation stops? 2+ ions are actively transported back into the sarcoplasmic reticulum. This allows pomyosin to block the myosin binding site and muscle contraction stops. ATP can generated via aerobic or anaerobic respiration. Phosphocreatine generates ATP ickly by adding phosphate to ADP released by the contracting muscle						
4	The protein filaments in the sarcomereActin – thin filaments which "pull" along myosin filaments in contraction Myosin – has "heads" which attach to actin during contraction. Troponin/tropomysin – wrapped around actin and move when bound Ca^{2+} ions to allow myosin to bind.			ATP hyd This cycl What ha Ca2+ ion tropomy be gener			ATP hydro This cycle o What happ Ca2+ ions tropomyos be generate							

ୁ, ସିଁDି... Beckfoot

Subject: Biology Topic: Organisms response to changes in their internal and external environment

Year Group: 13

	neostasis and fee	edback	Со	ntrol of bloo	d glucose	Key Vocabulary			
	Definition pH and	Maintenance of a constant internal environment despite internal/external changes. Important to regulate to allow optimum		Important to maintain because	It allows cells to have access to the substrate for respiration, whilst preventing cell damage by dehydration caused by high concentrations.	Ι	Gluconeogenesis	Happens in the liver - conversion of non-carbohydrates (e.g. glycerol and amino acids) into glucose; literally	
2	temperature	enzyme activity and rate of metabolic reactions.	2	High blood glucose	Insulin is released from β -cells in the pancreas in order to lower the concentration back to			'glucose-new-manufacture'. Happens when glycogen supply is exhausted.	
3	Water potential	Important to regulate to prevent cells bursting or shrinking by osmosis.Positive and negative (see key vocabulary). Predominantly homeostasis is maintained by negative feedback.		What is the	its optimum via negative feedback. Insulin binds to an insulin receptor, vesicles of glucose transporters fuse with the plasma membrane to allow more glucose to enter the cell. The cell also uses more glucose in		Glycogenolysis	Happens in the liver - breakdown of glycogen to glucose – 'breaking down	
4	Two types of feedback from change			process it uses?				glycogen'. Happens when blood glucose level is lower than normal.	
Control of blood water potential and osmoregulation					respiration and activated enzymes carry out glycogenesis.		Glycogenesis	Happens in the liver - conversion of glucose into glycogen — 'making	
I	Kidney structure – gross (overall)	Filtering out various substances in glomerulas due to the smaller diameter of afferent than efferent arteriole. Creates hydrostatic pressure.		Low blood glucose	Glucagon is released from α -cells in the pancreas in order to increase the concentration back to its optimum.			glycogen'. Happens when blood glucose level is higher than normal.	
	and fine (functional sections called nephrons) Nephrons and			What is the process it uses?	Activating enzymes which carry out (glycogenesis) as well as producing glucose from other molecules. Also by Activating enzymes that carry out gluconeogenesis (see		Negative feedback	When the feedback causes the corrective measures to be turned 'off', so returns the system to its original or (normal) level	
2	the formation of glomerular filtrate			Diabetes	 key vocabulary). Type I (insulin not released) and treatment is insulin injection. Type 2 (receptors unresponsive to insulin) and treatment is specialised diet and lifestyle. Released by the adrenal glands in times of stress and increases blood glucose in anticipation of increased activity. Adrenaline binds to receptors which activates adenyl cyclase. This converts ATP into cAMP, which acts as a second messenger to activate protein kinase for glycogenolysis. 		Positive feedback	When the feedback causes the corrective measures to be turned 'on', so makes the system deviate even	
3	Reabsorption	The filtrate passes into the Bowman's capsule and where certain ions (in PCT) and water (in DCT) are reabsorbed into the blood whilst the remaining filtrate is excreted as urine.Na2+ is actively transported out of the PCT into blood to allow glucose & amino acids to co-transport out as Na2+ diffuses into the epithelial cells.						further from its original or (normal)	
				Adrenaline			Osmoregulation	level The homeostatic control of the water potential of the blood.	
4	Maintaining conc. gradient						Stimulus Receptor		