, SD, Beckfoot		Subject: E	Biology	Topic: Energy	transfers between organisms Yes			Yea	r	Group: 13	enjoy learn succeed	
Pho ⁻	Photosynthesis – Light dependent reaction								Ke	y Vocabulary		
	Where? Occurs in the thylakoid			s of the grana in chloroplasts.					Photolysis	Light energy splits 2 water molecules into 4 electrons, 4 hydrogen ions (protons) and an oxygen molecule (light-dependent reaction). These electrons replace the electrons lost from a chlorophyll molecule when light strikes it.		
2	2 Non-cyclic photophosphorylation Chlorophyll molecules a of electrons to a higher ionized. The electron pa ATP, and reaches photos photosystem I when it a created from photolysis photosystem II are real			ubsorb light energy via photosystem II, exciting a pair energy level, leaving the chlorophyll molecules sses through an electron transfer chain to produce system I. The electrons replace the electrons lost in								
				photosystem I when it a created from photolysis	absorbs light to reduce NADP with the protons s • The photoionized chlorophylls electrons in laced by the electrons from photolysis of water					Oxidation	Loss of electrons or loss of hydrogen or gain of oxygen with a substance	
	low concentration protons (H*)	bonyal bonyal	ATP Desticle syttbase channel						3	Reduction	Gain of electrons or gain of hydrogen or loss of oxygen from a substance	
3	Cyclic photophosphorylation Only uses photosystem I photosystem I rather that amounts of ATP			, where the electrons are passed back to In NADP via electron carriers, producing small					Co-enzyme	A non-protein compound that is necessary for the functioning of an enzyme. (NOT AN		
Photosynthesis – Light in Calvin cycle")			lependent reaction (a.k.a. "The		Red I	quired P RP 7	Practicals 7 and 8 Chromatography can be used to separate out photosynthetic				and respiration where they carry hydrogen atoms from one molecule to another. E.g.	
1 2 @	Vhere? Key information		The Stroma of Chloroplasts The Calvin cycle depends on the products from the light dependant stage (reduced NADP and ATP). The fixation of carbon dioxide is catalysed by enzyme Rubisco. Forms GP (glycerate-3-phosphate), which is then reduced to TP (triose phosphate) using ATP. Meanswhile, NADP reoxidises. 5 out of every 6 TP molecules are used		R _f value 2 RP 8		pigments, identifying them by their Rf value. $= \frac{Distance\ travelled\ by\ spot}{Distance\ travelled\ by\ solven}$ Investigating factors affecting dehydrogenase activity in extracts of chloroplasts (DCPIP goes from blue \rightarrow colourless when reduced). Photosynthesis is the process plants, from which energy from	r t nt s n in pm	5	Photoionisation	NAD, FAD and NADP. Process by which a chlorophyll molecule becomes ionised. Caused by the chlorophyll molecule absorbing light energy and boosting the energy of a pair of electrons within a chlorophyll molecule, raising them to a higher energy level and they become so energetic they leave the chlorophyll molecule altogether and are taken up by an electron carrier.	
			to regenerate R hexose sugars (ars (e.g. glucose).		topynthesis glucose Organic molecule	sunlight is used to convert inorganic molecules into organ molecules.	nic 6	6	Limiting factor	A variable that limits the rate of a chemical reaction e.g. temperature, light intensity	

Bec		Subject: Biology		Topic:	Topic: Energy transfers between organisms Year C			iro	ир: I 3	enjoy léarn succeed		
Respiration – Anaerobic					Stages of respiration (aerobic)					y Vocabulary		
Zz ATP Concernent	Glycolysis		First stage of aerobic and anaerobic respiration. It occurs in the cytoplasm. Glucose is phosphorylate (using 2 ATP) and forms 2 molecule of TP. TP is then oxidised to 2 Pyruvate (NAD is reduced and 4 AT molecules released by substrate level phosphorylation). There is a net yiel of 2 pyruvate, 2 reduced NAD and 2 ATP molecules.		ic ated les	I	Following glycolysis – the link reaction	ring sis – In presence of oxygen, pyruv actively transported into k mitochondrial matrix. Here i on oxidised to acetate, then cor			Phosphorylation	Process which makes glucose more reactive by adding 2 phosphate molecules. Happens in plant and animal cells when phosphate groups are transferred from donor molecules to ADP to form ATP. The formation of ATP in the electron transport chain of aerobic respiration.
2x ADP 0000 Photophate 2x ADP 0000 2x ADP 00000 2x ADP 0000 2x ADP 0000 2x ADP 0000 2x ADP 0000 2x AD		sphate 2x NAD' 2x NADH H+ Pyruvate			d to 2 ed and 4 ATP Ibstrate level is a net yield NAD and 2			with coenzyme A to acetyl C (CO ₂ is released by decarbo	oA. kylation).	2 3	District level phosphorylation Oxidative phosphorylation	
							The Kreb's cycle – De Na De Na A Fa Na	Acetyl CoA combines with oxaloacetate and this compo oxidised until oxaloacetate r	und is eforms.			
2	Why do occur?	oes it	If oxygen is not available (the fina electron acceptor).		the final (2-carbon molecule		acatylcorazyme A lieculo es 6-carbon moleculo	(removal of H atoms) and su level phosphorylation occur. produces 2 CO ₂ , 2 reduced	bstrate This NAD, I			Happens in the mitochondria within the inner folded membrane (cristae). It involves the transfer of electrons
3	In mami lactate ferment	mals – tation	Pyruvate is reduced to lactate using NADH (which becomes reoxidised) Lactate can be converted to glycoge			Reluced FAD FAD Carbon dioxide		reduced FAD and I ATP for every turn (2 turns for every glucose due to 2 pyruvate entering link reaction.				down a series of electron carrier molecules.
Glucos C=0 H-C=0H CH_3 2 Lactate	in the liver or oxidized further to release energy, when oxygen is available.				3	Electron transport chain	Reduced NAD and FAD don electrons to the electron tra chain in the inner mitochonc membrane. Oxidative	ate nsport rial	4	Chemiosmosis	Theory of oxidative phosphorylation. As electrons flow along the chain, they release energy which causes the active transport of protons across the	
4	In plants fungi – a ferment	s and alcoholic tation	Pyruvate + reduced NAD → ethanol + carbon dioxide + oxidised NAD. Not reversible like lactate fermentation.		nol).			phosphorylation occurs and chemiosmosis. Oxygen is fina electron acceptor as well as protons to form water.	al the			inner mitochondrial membrane which means a concentration gradient of protons is maintained with a higher
Required Practical 9					spiratory substrates						membranal space than in the	
Ι	Investiga respiratio time take greater r	itigation into the effect of a factor on the rate of iration of yeast e.g. temperature. Measured by taken to decolourise methylene blue (faster = ter rate of respiration).			I 2	Lipid Hydrolysed to fatty acids and glycerol. Glycerol is phosphorylated and converted to triose phosphate, which enters the glycolysis pathway The fatty acid part is broken down into 2-carbon fragments which are subsequently converted into acetyl CoA, also generating reduce NAD & FAD Protein Protein is hydrolysed to amino acids. In the liver, the amino group is removed (deamination), and the am group is converted to urea and removed in the urine The remaining amino acid can then be converted to intermediate				0		mitochondrial matrix. They then diffuse back into the mitochondrial matrix through ATP synthase channels which forms ATP.

Bor		Sub	ject: Biology	Topic: Energy transfers between orga	nisr	ns	Year Group: 13			enjoy learn succeed	
Bio	mass				K	ey Vocabı	ey Vocabulary				
Ι	Definition	١	The total mass of living mate gm ⁻² . Fresh mass is quite eas Measuring dry mass overcor usually only a small sample a	erial in a specific area at a given time. Usually measured i by to assess, but varies depending on the water content. mes this problem but the organism must be killed, it is and may not be representative.	י <mark>1</mark> 2	Trophic level GPP (primary))	Each stage in a food chain Gross primary production which is the total quantity of the chemical energy store in plant biomass, in a given time. Plants use			
2	Where d it come f	loes Plants synthesise organic of from? Most of the sugars synthes are used to make other gr plant.		ompounds from atmospheric, or aquatic, carbon dioxide. ised by plants are used as respiratory substrates. The rest oups of biological molecules, forming the biomass of the		NPP (seconda	ary)	 20-50% of this energy in respiration. Gross primary production – respiratory losses. The chemical energy store which is left when these losses to respiration have been taken into account. This is available for plant growth and 			
3	Calorime	etry	Dry biomass shows the che by the process of calorimet within a sealed chamber, the	emical energy store in an organism and can be measured ry. A dry sample is weighed and burnt in pure oxygen te temperature increase of the fixed volume of water is released		Pyramid	of	reproduction and available to other trophic levels in the ecosystem (such as consumers and decomposers).f A pyramid drawn with bar lengths proportional to the numbers of			
Productivity		'n	The energy store available in biomass the more energy the more productive				of	organisms present A pyramid drawn with bar lengths proportional to the mass of plants/animals			
ו ר	Net		Important to increase production (N) is the total chemical end	uctivity in agriculture.	6	Pyramid Energy	of	A pyramid drawn with bar len stored in organisms	gths proportional to the	e energy	
Z	producti	on	and respiration have been ta ingested plant food. N = I - • Where N is net productio ingested food, F is the energy respiration.All use units (kJ	aken away from the chemical energy tors of the ($\mathbf{F} + \mathbf{R}$) on, I represents the total chemical energy store in gy lost in faeces and urine, and R is energy lost to m-2 yr-1) f energy transfer from one trophic level to another can able after the transfer ble before the transfer) × 100		Productiv	vity	The rate of generation of biomass in an ecosystem. Use measured in units of mass per area put unit time (gm ⁻² practices try to improve this by increasing yields by inc efficiency of energy transfer along the food chains which our food		sually 1 ⁻² y ⁻¹). Farming acreasing the nich produce	
3	Primary secondai	and [~] y	See GPP and NPP			Intensive	ve	A type of farming which uses processes, such as using confined spaces to restrict movement, keeping the environment warm and excluding predators, to try and make energy conversion more officient by onsuring that as much onergy from recritation as			
4	Efficiency	/	The percentage efficiency of be calculated as (energy availated as			farming					
5	Increasin producti in farmin	lg vity Ig	Reducing respiratory loses in a human food chain e.g. reduce movement of animals Simplifying food chains to reduce energy loss to non-human food chains e.g. killing weeds and pest using herbicides and insecticides					possible goes into growth rather than other activities or other organisms.			

Be	ckfoot	Subject:	Biology	Topic: Energy transfers between organisms	Year (Group: 13		enjoy léarn succeed		
Nutrient cycles There is a fini		There is a finite sup	bly of nutrients on Earth, which are recycled within natural ecosystems.	k	Key Vocabulary					
Ι	Nitrogen o	cycle	ra	Nitrogen fixation – bacteria transform inert (unreactive) nitrogen gas in the atmosphere to ammonium ions. These are either found in soil or on root nodules of leguminous plants. Can also be done chemically by lightning.	ne I	Ecosystem	All th a par	e living and non-living components of ticular area.		
2	annonum nitrification nitrite nitrification estate denitrification nitrogen en			Ammonification – decomposers break down proteins and urea in dead pla and animals to produce ammonia containing molecules.	^{ants} 2	Saprobiontic microorganism	Also I that d	Also known as saprophyte – an organism hat obtains its food from the dead or		
3		econtaining molecules, e.e. proteins, in producers, in producers, disastion		Nitrification – nitrifying bacteria convert ammonium ions first into nitrites and then different nitrifying bacteria convert nitrites to nitrate ions (nitrat	es).		decay orgar	lecaying remains (detritus) of other organisms.		
	death ammonification ammonification death ammonification death ammonification death ammonification death ammonification death ammonification			Nitrates are absorbed by plants to make proteins – passed onto animals a they eat plants and use the amino acids to make their own proteins. Mycorrhizae fungi help to increase the surface area of plant roots to aid absorption (this is a symbiotic relationship).	s 3	Detritrivores	Organ job. T decay	Organisms that help saprophytes do thei job. They feed on pieces of dead and decaying material and finely break it up increasing its surface area.		
4				Denitrification – denitrifying bacteria convert nitrates back into atmosphe nitrogen (they work in anaerobic conditions)	ric 4	Decomposer	Any c	organism which breaks down organic		
5	Phosphorus cycle		the state	Phosphorus in fertilizer and rocks is distributed by rain to nearby land and bodies of water. Animals eat the plants grown by fertilizer They expel the			detrit	ivores.		
			Bagwer Bogen	phosphorus as waste. It eventually reaches the water as runoff. Phosphoru cycled through animals that live in water. It is eventually deposited into the ocean floor where it will eventually become sedimentary rock. Erosion of rock restarts the cycle.	is is 5	Symbiotic	Wher Mutu relati mutu	n two species live in close proximity. alistic is a type of symbiotic onship where the relationship is ally beneficial for two organisms.		
Use	e of fertili	sers								
I	Why use	fertilisers?	Fertilisers can be u growth In agricultu the soil.	sed to provide plants with minerals, particularly nitrates, to support their re systems, the harvesting of crops prevents the reintroduction of minerals	^{to} 6	Leaching	Proce from			
2	Negative fertilisers	effects of	 I – Leaching (see k 2 – Reduced specie 3 – Eutrophication: growth (usually algorized saprobionts are respectively and the second second	eyword definitions) is diversity: Nitrogen rich soils are only favourable to rapidly growing specie Nitrate levels increase in rivers and lakes due to leaching.The increased pla ne) blocks light from and kills plants below the surface. Increased number of piring, reducing oxygen levels.This kills aquatic organisms like fish.	es int f		will d nitrat soil, e roots	issolve any soluble nutrients, such as e ions and carry them deep into the eventually beyond the reach of plant		