
	-00-	Subject: Biology	Year Group: 12 Key Vocabulary		enjoy learned					
	Beckfoot lonomers and polyme	ers	С	arbohydrates				Кеу	_	
	onomers and polymers (see key		Monosaccharides	Glucose is a hexose sugar with 2 isomers			I	Monomer	Individual molecules that make up a polymer	
	Condensation reaction (see key		Eg: glucose, fructose, galactose (see key vocab)				2	Polymer	Long chains composed of many individual monomers bonded together in repeating pattern	
	vocab)	dimer			HO C-C OH HO C-C (H) H OH H OH α - glucose β - glucose			3	Condensation reaction	Occurs when two molecules combine to form a more complex molecule with the removal of water
2	Hydrolysis Ho reaction	B	2	Disaccharides	Name	Τ	Monosaccharide constituent		Hydrolysis reaction	Occurs when larger molecules are broken down into smaller molecules with the
	(see key	→ ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←		(see key vocab)	a) Maltose	-	2 × α-glucose			addition of water Simplest carbohydrates, consisting of only one sugar molecule eg: glucose, fructose,
	vocab)			Eg: maltose, sucrose, lactose	b) Sucrose	,		5	Monosaccharide	
				c) Lactose	se β-glucose and galactose				galactose	
000	00000000000000000000000000000000000000	3	Polysaccharides	Name	Function		6	Disaccharide	Sugars composed of two monosaccharides joined together by a glycosidic bond, in a	
Amy	JEL LAS		(see key vocab) Eg: Amylose, glycogen, cellulose	a) Amylose	Amylopectin (starch) is the main polysaccharide energy store in plants. It is composed of alpha glucose.				condensation reaction eg: maltose, sucrose, lactose. Can be separated by a hydrolysis reaction.	
Ame	the free			b) Glycogen		ysaccharide energy store in mals, composed of alpha glucose	7	Polysaccharide	Sugars composed of many monosaccharides joined together by glycosidic bonds, in a condensation reaction eg: amylose, glycogen, cellulose. Can be	
renge	Starch Głycogen			c) Cellulose	wall	uctural component of plant cell Ils, composed of long unbranched iins of beta glucose				
Ρ	roteins							8	Amino acid	separated by a hydrolysis reaction. Monomer units that make up proteins. 20
1	Amino acids	hydrogen		4 Protein (see key vocab)						amino acids exist with different R groups
	(see key vocab)	A dipeptide	group					9	Dipeptide	Two amino acids joined together by a peptide bond in a condensation reaction. Can be separated by a hydrolysis reaction.
2	Dipeptide (see key vocab)	H ₃	6 Seconda	ary The curling or folding of the polypeptide chain into α-helices and β-pleated sheets due to the formation of hydrogen bonds Hydrogen bonds The overall specific 3-D shape of Hydrogen bonds			10	Polypeptide	A polymer made of many amino acids joined together by peptide bonds in a condensation reaction. Can be separated by a hydrolysis	
3	Polypeptide (see key vocab)		7 a protein, which is determined by lonic bonds interactions between R groups Disulphide and the properties of R groups bridges Quaternary The specific 3-D shape of a Hydrogen bonds							reaction.
		AMINO ACIDS PEPTIDE	PF	8	Protein that is determined by the multiple polypeptide chains and/or prosthetic groups bonded together			11	Protein	Contains one or more polypeptide chains. There are four structural levels

			Subject	t: Biology	Торі	ic: B	Biological	molecules (2)		Yea	r Gi	roup: 12	enjoy learned
Lipids					B	Bioc	chemical ((food) tests	Key	Key Vocabulary			
Γ	Triglyceride (see key	Structure Function				Biochemical tests are use reagents to distinguish the biological molecules contained in food samples						Lipids	Macromolecules made of fatty acid monomers. 2 types: triglycerides,
	vocab)	→ fatty acids		Roles in respiration, energy storage- due to insolubility and high carbon to	2	5	Molecule Reducing sugars	Reagent Benedict's reagent → Heat	Red/	orange ipitate	2	Saturated	phospholipids Molecule contains no carbon double bonds (C=C), only has carbon single
	glycerol →					- 1	Starch Non-reducing	lodine in potassium iodide solution Hydrochloric acid → Heat	Red/	/black /orange			 bonds (C-C) has as many hydrogen atoms as possible Molecule contains at least one C=C bond and has fewer hydrogen atoms than is maximally possible
						_	sugars Proteins	Sodium hydrogencarbonat Benedict's reagent → Heat Sodium hydroxide	e preci Purpl	ipitate Ie	3	Unsaturated	
2	Phospholipid (see key vocab)			Hydrophobic tails (water hating) and hydrophilic heads		l	Lipids	Copper (II) sulphate Ethanol Water → Shake	Cloud	dy white	4	Triglyceride	Molecule formed by the joining of one glycerol to three fatty acids by a ester bonds, through condensation
	(water loving) allo the phospholipids		(water loving) allow the phospholipids to form phospholipid									reactions. 3 molecules of water are produced as 3 reactions occur. Can be separated by a hydrolysis reaction. Molecule formed by the joining of one glycerol to two fatty acids and one	
				bilayers (membranes)	fu	function. The specificity of enzymes is due to the tertiary structure of its active site, allowing complementary binding to substances							Phospholipid
3	Saturated	Saturated Lipid		pid	I Lock and key model								phosphate molecule by ester bonds, through condensation reactions
	(see key vocab)	$ \begin{array}{c} \begin{array}{c} H \\ C \\ C \\ -C \\ -C \\ -C \\ -C \\ -C \\ -C$					L J		6	Enzymes	Biological catalysts that speed up the rate of reaction. They remain unchanged and can be used again. They lower the activation energy of the reaction.		
						enzyme + substrate enzyme/substrate enzyme/product entering active site complex complex leaving active site						Activation energy	Minimum amount of energy required for the reaction to occur
4	Unsaturated (see key vocab)		Unsaturated Lipid		2 Induced fit model Substrate Active site Substrate						8	Lock and key model	A model that proposes that each substrate (key) only fits a specific enzyme (lock)
		$ \begin{array}{c} \circ & \cdot & \cdot & \cdot \\ H & H & H & H & H \\ H & H & H & H \\ H & H &$					Substrate entering active site of enzyme Enzyme/substrate complex Enzyme/products leaving complex Enzyme/products complex Products leaving active site of enzyme				9	Induced fit model	A model that proposes when the substrate binds with the enzyme, the enzyme changes shape and molds itself to the substrate

		Subject: Bio	ology Topic: Biological molecules							ar Group: 12	enjoy learn succeed		
D	NA and RNA		RNA				Key Vocabulary				30-		
	DNA and RNA are both polynucl	leotides		There are 3 types of RNA;				DNA (Deoxyribonucleic acid)	in	A nucleic acid, composed of nucleotides, that carries genetic instructions. It is double stranded and forms a double helix structure, composed of two polynucleotide chains that interact to form a coil.			
2	Nucleotide structure		copy o encode	Messenger RNA (mRNA)-a transcript copy of a gene which encodes a specific			2			nucleic acid molecule e	ssential in various biological roles in coding,		
				polypeptide Transfer RNA (tRNA)-carries the			3	Nucleotide		A structural component of DNA and RNA. Consists of a phosphate group, pentose sugar and organic base			
	phosphate group pentose sugar	organic base	polypeptide subunits (amino acids) to the organelle responsible for synthesis (ribosome)				4	Semi conservative replication	Me Di	Method by which DNA replicates to form two identical molecule DNA (consist of one original DNA strand and one newly synthes DNA strand)			
3	RNA and DNA		4 Riboso	mal RNA (rRNA)-a primary nent of the ribosome		5	Polarity (water)	ele	• ·	ar bonds due to the difference in s of one negatively charged and one positively			
	Cytodine Guaphee Guaphee Guaphee	Guanine G	and is i	and is responsible for its catalytic activity			6	Water	Co ox	Consist of two hydrogen (positively charged) covalently bonded to one oxygen (negatively charged). This causes attraction (hydrogen bonds) between one water molecule and another.			
	Adenine A		DNA re	replication						Water			
	uad 🖉 🔰 🌔	l Polyn	Polynucleotides Polymers made up of many nucle phosphodiester bonds in a series				• •		Property	Why is it useful?			
	Nudeobases	2 DNA helix	double	Held together by hydrogen bond					Liquid medium	Provides aquatic habitats, medium for chemical reactions & used for transport			
	RNA DNA Ribonucieic acid Deoxyribonucieic ac	RNA DNA Ribonudelc add Deoxyribonudelc add			base pairs. Adenine + thymine- 2 bonds					Metabolite	Use in hydrolysis & condensation reactions		
	DNA	RNA	- Carri		Cysteine + guanine-				3	High specific heat capacity	Keeps aquatic & cellular environments stable		
4	strands	ne strand	1- DI	I- DNA helicase breaks H bonds					4	High latent heat of evaporation	Evaporation has a cooling effect on organisms		
5	Length Very long Rel	elatively short		een the two		- Aller				Cohesion	Water is 'sticky'- helps to move/pull up the xylem		
6	Pentose Sugar Deoxyribose Rib	bose		2-Free nucleotides complementary base pair to the exposed strands				6	Surface tension	Allows pond skaters to move on surface			
7		denine, Cytosine, uanine & Uracil	cond	3-DNA polymerase catalyses condensation reactions to join					7	Solvent + transport medium	Dissolves ionic & polar molecules so they can be transported		
8	Function Store genetic Iranster genetic information information & forms			adjacent nucleotides, forming phosphodiester bonds					8	Reaction medium	Cytoplasm in cells is aqueous solution		
	ribo	osomes with oteins						Se Original (template) DNA strand	9	Incompressible	Prevents plants from wilting & acts as a hydrostatic skeleton for invertebrates		