

	Bee	Subje	ct: Sc	ience (Phy	sics)		Topic: Atomic Structure (Physics)	Year Group	o: 9	enjoy Jeann succe	ed
Structure of the Atom				odels of the	e Ator	om [·]	through time	Key Vocabulary			
I	Radius of an atom	Approx. Ix10 ⁻¹⁰ m	I	Early ideas	Atom	ms w	were thought to be tiny spheres that could not	be divided	1	Mass Number	The atom's total number of Protons
2		Positively charged	2	Plum Pudding	The plum pudding model suggested the atom was a ball of positive charge with negative electrons embedded in it				2	<u> </u>	added to the number of Neutrons
	Protons		3	Nuclear The alpha particle scattering experiment showed that atom was concentrated in a nucleus at the centre an						Atomic Number	The number of protons in an atom. Will also be equal to the number of
3	No charge and			liodei		was positively charged					electrons
	Neutrons	found in the nucleus	4	Niels Bohr	Sugge	geste	ed electrons orbit the nucleus at specific distand	3	lsotopes	An atom with the same number of protons but	
4	4 Electrons	Negatively charged and found in energy levels at different distances	5	James Chadwick	James About 20 years after the nucleus was accepted, Chadwick discovered evidence for neutrons in the nucleus						a different number of neutrons
								4	Half-life	The time taken for the activity of a radioactive	
		from the nucleus	N	Nuclear Radiation							sample (or the number of radioactive nuclei) to halve
5	Nucleus	At the centre of the atom. Contains neutrons and protons	Ι	IAlpha - Beta - Gamma 2 Protons + 2 Neutrons / stopped by paper or few cm in air - High energy electron / stopped by thin metal or a metre in air - Electromagnetic wave / stopped by thick lead and concrete			or a metre in air	5	Contamination	The unwanted presence of radioactive atoms on other materials	
6	Representing	(Mass number) 23 (Atomic number) 11 atoms	2	equation Beta –		- -	- Mass number -4 and Atomic number -2 - Mass number no change and Atomic number +1 - No change		6	Irradiation	The process of exposing an object to nuclear
			3	power	Alpha – Beta – 1mma –	- -	, 0 0				radiation (the object does not become radioactive)
7	Charge of an atom	Atoms have equal numbers of protons and electrons so are neutral	4		Alpha – Beta –	2^/	$\overset{^{219}}{_{86}}\text{radon} \longrightarrow \overset{^{215}}{_{84}}\text{polonium} + \overset{^{4}}{_{2}}\text{He}$ $\overset{^{14}}{_{6}}\text{carbon} \longrightarrow \overset{^{14}}{_{7}}\text{nitrogen} + \overset{^{0}}{_{-1}}\text{e}$		7	Random	Something that cannot be predicted – you do not know when a radioactive nucleus will decay

	kground radiation ysics only)	and radiation dose:	N	uclear Fission: (Physics only)				
I	Natural sources	a) Rocks b) Cosmic rays	I	This is the splitting of a large, unstable nucleus into two smaller nuclei				
2	Man made sources	a) Nuclear weapons testingb) Nuclear accidents	2	Usually this happens when the unstable nucleus absorbs a neutron				
3	Background radiation and dose may be affected by	a) Occupation (e.g. pilot, radiographer, etc)b) Location (e.g. Cornwall)		Either two or three neutrons are released during fission, as well as Gamma rays and energy. The neutrons can go on to start a chain reaction if they are absorbed by other unstable nuclei.				
4	Units	Radiation dose is measured in sieverts (Sv) or millisieverts (mSv)		lighter element neutron				
5	Half-life	Different isotopes have a range of half-lives and this can affect the hazards involved						
6	Nuclear radiation is used in medicine for	 a) Providing images of internal organs b) Controlling or destroying unwanted tissues 		neutron + energy Uranium 235 neutron				
Nuc	clear Fusion: (Phy	vsics only)		lighter element				
1	This is the joining of two	light nuclei to form a heavier nucleus						
- -	e 1	of the mass may be converted into energy. ars (including the Sun) to release heat and	4	A nuclear explosion is a chain reaction that has not been controlled				