Energy equations
2

Velocity - Time graph

Terminal velocity

I	First law	Resultant force is zero if stationary or travelling at constant speed. Objects will travel in a straight line unless a force acts on it (HT- resisting that change)
2	Second law	F= ma- acceleration is proportional to force and inversely proportional to mass
3	Third law	When objects interact their forces are equal and opposite

common speeds
Walking- $1.5 \mathrm{~m} / \mathrm{s}$, running- $3 \mathrm{~m} / \mathrm{s}$, cycling $-6 \mathrm{~m} / \mathrm{s}$
PHYSICS \& HT ONLY Force as rate of change of momentum: Force = change in
momentum \div time taken for the change

Forces and Braking		
\mathbf{I}	Stopping distance	Stopping distance= thinking distance +braking distance
$\mathbf{2}$	Thinking distance	The distance a vehicle travels while a driver is reacting.
$\mathbf{3}$	Reaction time	The time it takes for a driver to react (typically $0.2-0.9$ sec) Tiredness, drugs, alcohol and distractions.

4 Braking distance

The distance a vehicle travels under braking. Weather conditions(rain or ice) and conditions of the brakes or tyres of the vehicle.
Affected by:

Braking force

When the brakes are pressed, work done by the friction force between the brakes and the wheel reduces the KE of the vehicle and the temperature of the brake increases.. The greater the speed the greater the force needed to stop. Large deceleration may lead to loss of control or overheating of the brakes.

2
Area A Area C
Area D

4 Calculating the
distance travelled or the displacement from velocitytime graph (HT)
$\left\lvert\, \begin{gathered}\text { Time (s) } \\ \text { snows } \\ \end{gathered}\right.$
Both acceleration and gradient are positive, the velocity is increasing.
Graph is flat- object has constant/steady speed.
The gradient and acceleration is negative, the velocity is decreasing.
The velocity is stationary, the object is at rest
The area under a sectio of the graph is equal to the distance travelled in that time.

If the acceleration is constant, the area can be split into a rectangle or a triangle

y, the object is at rest	
Distance $=$ speed x time	
a	Area of rectangle $=$ base x height
Area of triangle $=1 / 2$ base x height	

The skydiver accelerates as they begin to fall
As the skydiver speeds. up the air resistanc force increases

At terminal velocity the air resistance force and weight are equal so speed is constant
The parachute opens which increases the air resistance and slows the skydiver

The skydiver continues to slow down until the new slow down untit the new weight are equal again (so a new teminal velocity is reached)

Termiinal velocity- When you jump out of a plane you accelerate because the force of the air pushing against you is not as strong as gravity. As you accelerate, the force of the air pushing against you increases. Eventually, the force of air resistance is equal to the force of gravity. You stop accelerating. You have reached terminal velocity. When you pull your parachute, the air resistance becomes the larger force and so you slow down.

Momentum (HT)

Momentum is the product of mass and velocity.
Conservation of momentum- states that in a closed system:
Total momentum before an event= total momentum after an event.
Momentum is conserved in collisions and explosions.

