

旬
Beckfoot

Subject: Science	Topic:Atomic structure and periodic table (2)

Year Group: 9

Chemical equations

Developments of the periodic table

I	Before discovery of protons, neutrons, electrons
2	Mendeleev 3Now: Elements arranged in order of atomic number

Elements ordered by atomic weight. Some were placed in wrong groups and the periodic table was incomplete

Left gaps to fill in newly

 found elements.Knowledge of isotopes explained why atomic weight order wasn't always correct

Elements with similar properties in groups (columns)- have same No of electrons in outer shell AND periods (rows)have same number of electron shells

Half equations + ionic equations (HT ONLY) -Links to Chemical changes unit

| I | Reduction: Positive metal ions (cations)
 gain electrons to form neutral atoms | $\mathrm{Cu}+2 \mathrm{e}^{2}=\mathrm{Cu}$ |
| :--- | :--- | :--- | :--- |
| 2 | Oxidation: Negative non-metal ions (anions)
 lose electrons to form neutral atoms | $2 \mathrm{Cl}=2 \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$ |
| 3 | Half equations combine to form ionic
 equations to show overall reactions | $\mathrm{Cu}^{2+}+2 \mathrm{Cl}^{-}=\mathrm{Cu}+\mathrm{Cl}_{2} \quad$ |

Alkali metals (Group I) \quad Reactions of Alkali metals (Group I)

Very reactive with oxygen, water, chlorine -Have I electron in outer shell. Form +1 ions. More reactive down group -Outer negative electron further from positive nucleus so more easily lost
Halogens (Group 7)
Diatomic molecules (pair of atoms)-7 outer shell electrons, form I+ ions, Mp's/Bp's increase down group- increasing atomic mass No, decreasing reactivity down group-increasing proton

Metals and non-metals

I	Metals	Left of dark line on periodic table
2	Non- metals	Right of dark line

Form positive ions, conductors,
high mp's/bp's, ductile, malleable
Form negative ions insulators, low mp's/bp's

No so electrons gained easier

Transition metals (CHEMISTRY ONLY)

I	Compared to group I	Less reactive, harder, denser, higher mp's	Cu^{2+}	Blue
	Ni^{2+}	Pale green (used to make margarine)		
2	Properties	Different ions with diff charges, used as catalysts, form coloured compounds	Fe^{2+}	Green (Use Haber process)
		Fe^{3+}	Reddish/brown	
		Mn^{2+}	Pale pink	

Key vocabulary

I	Periodic table	A chart that shows the elements arranged in order of atomic number, along with chemical symbol and the average atomic mass (in atomic mass units) for that particular element.
2	Periods	Rows of the periodic table of elements. These represent the number of energy levels for electrons in atoms of the elements. Eg: Na- period 3
3	Groups	Columns on the periodic table of elements, ordered according to the numbers of electrons in the outer shells of the atoms of each element Eg: Na- group I- I electron in outer shell
4	Chemical symbol	A one-or two-letter abbreviation for the name of an element. Eg; Na (Sodium)
5	Chemical	Show chemical reactions with reactant/s and equations
product/s. Law of conservation of mass states the total mass of products = total mass of reactants		

