Chemical Changes

Chemistry Beckfoot	
General reactions 1 Metal + oxygen Metal oxide 2 Metal + water Metal hydroxide 3 Metal + acid Salt + hydrogen 4 Acid + base/alkali Salt + water 5 Acid + metal carbonate Salt + water + carbon dioxide	

Reactivity series

Metal	Extraction method
Potassium	Electrolysis - electricity used to split the metal from its compound E.g. $2 \mathrm{MgO} \rightarrow 2 \mathrm{Mg}+\mathrm{O}_{2}$
Sodium	
Lithium	Non-metal
Calcium	Reduction with carbon: carbon removes the metal from the metal oxide E.g. 2CuO $+\mathrm{C} \rightarrow 2 \mathrm{Cu}+\mathrm{CO}$ 2
Magnesium	Carbon
Zinc	Does not form compounds, found in native state
Iron	
Copper	Gold

Acids and their salts

Acid	Formula	Salt	Formula
Hydrochloric acid	HCl	Chloride	Cl^{-}
Nitric acid	HNO_{3}	Nitrate	$\mathrm{NO}_{3}{ }^{-}$
Sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulfate	$\mathrm{SO}_{4}{ }^{2-}$

Other useful ions	
Hydroxide	OH^{-}
Hydrogen ion	H^{+}
Ammonium	NH_{4}^{+}
Carbonate	$\mathrm{CO}_{3}{ }^{2-}$

Required Practical Making a soluble salt

\mathbf{I}	Measure out a volume of dilute sulphuric acid using a measuring cylinder
$\mathbf{2}$	Warm dilute acid in a beaker with a Bunsen burner
$\mathbf{3}$	Add metal oxide one spatula at a time until it in excess (when you can see unreacted metal oxide)
$\mathbf{4}$	Filter the mixture using a funnel and filter paper
$\mathbf{5}$	Pour the filtrate into an evaporating basin
$\mathbf{6}$	Warm on a water bath until crystals form

Key Vocabulary		
I	Oxidation	Gain of oxygen or loss of electrons
2	Reduction	Loss of oxygen or gain of electrons
3	Displacement reaction	A reaction where a more reactive metal displaces a less reactive metal from a compound
4	Base	A metal oxide or hydroxide
5	Alkali	A soluble base

PH		
I	Acids	Contain aqueous H^{+}ions; $\mathrm{pH}<7$
2	Alkalis	Contain aqueous OH^{-}ions; $\mathrm{pH}>$ 7
3	Neutral	A solution with a pH of 7, has equal concentration of H^{+}and OH^{-}ions
4	Neutralisation	$\mathrm{H}^{+}($aq $)+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
5	How to measure $\mathbf{p H}$	Universal Indicator with colour chart or pH probe

Required practical - Titration (Chemistry only)			
I	Fill burette with solution of known concentration		
2	Measure out $25.0 \mathrm{~cm}^{3}$ of solution with unknown concentration with a pipette		
3	Add unknown solution into a conical flask and place on a white tile		
4	Add an indicator (usually phenolphthalein which is pink in alkali and colourless in acid/neutral)		
5	Add known solution slowly to the unknown solution		
6	Swirl regularly and add dropwise close to the endpoint		
Electrolysis			
		Formed at positive electrode	Formed at negative electrode
	ound	Non-metal	Metal
	ous ound	Halogen (if electrolyte contains halide) or oxygen (if electrolyte contains sulfate)	Hydrogen

Half-equations (HT only)

Formation of metal	e.g. $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$
Formation of halogen	e.g. $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
Formation of hydrogen	$2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$
Formation of oxygen	$4 \mathrm{OH}-\rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-}$

Key Vocabulary

I	Electrolysis	Process where electric current is passed through an electrolyte to separate ions
2	Anode	Positive electrode
3	Cathode	Negative electrode
4	Anion	Negative ion (e.g. non- metal ions)
5	Cation	Positive ion (e.g. metal ions)
6	Electrolyte	Molten or aqueous ionic compound.
7	Cryolite	Substance added to aluminium oxide to lower melting point

