|                     | Beckfoot                                                      |                                                                                                                                                                      | Subject: Science (Chemistry)                                                                                                                                                                                                                    |   | Topic: Quantitative Chemistry Year               |                                                                                                                                                                                                                                 | Year Gro                                                                                      | oup: l              | en<br>st                                                        | enjoy<br>learn<br>succeed                                                                                                                                                                                                                                                                                |  |
|---------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Calculation Types I |                                                               |                                                                                                                                                                      | Calculations Types II                                                                                                                                                                                                                           |   |                                                  |                                                                                                                                                                                                                                 | Key Vocabulary                                                                                |                     |                                                                 |                                                                                                                                                                                                                                                                                                          |  |
| I                   | Relative<br>atomic mass<br>(A <sub>r</sub> )                  | $A_r = \frac{\text{sum of}}{\text{su}}$                                                                                                                              | ( <u>isotope abundance x isotope mass no.)</u><br>n of abundances of all the isotopes<br>Cl 75% abundance & <sup>37</sup> Cl 25% abundance<br>(37 x 25) ÷ 100 = <b>35.5 A. of Chlorine</b>                                                      | 5 | HT Only:<br>The mole &<br>Avogadro's<br>Constant | A mole of a substance <b>ALWAYS</b> contain<br>number of molecules/ions/particles/atom<br>Avogadro's Constant: I mole = $6.02 \times 10^{10}$<br>number of moles = $\frac{\text{number of } 10^{10}}{10^{10}}$                  | ains the same<br>ns – this is called<br>23<br>particles                                       | same<br>s is called | Law of<br>Conservation of<br>Mass                               | No atoms can be created or<br>destroyed in a chemical<br>reaction so the total mass of<br>reactants must equal the total<br>mass of the products                                                                                                                                                         |  |
| 2                   | Relative<br>formula or<br>molecular<br>mass (M <sub>r</sub> ) | (conver)(conver)(conver) $kelative$ Sum of the relative atomic masses of<br>shown in the formulanolecular<br>mass $(M_r)$ Example<br>$L \times Mg: L \times 24 = 24$ |                                                                                                                                                                                                                                                 |   |                                                  | 6.02 ×<br>Example: How many atoms are in 11.5 g<br>• Calculate number of moles first = 11<br>moles                                                                                                                              | 10 <sup>23</sup><br>g of sodium?<br>1.5 ÷ 23 = 0.5                                            | 2                   | Relative atomic<br>mass (A <sub>r</sub> )                       | Average mass of an element<br>taking into account the mass &<br>amount of each isotope it<br>contains on a scale where the<br>mass of a <sup>12</sup> C atom is 12                                                                                                                                       |  |
|                     | I x S:<br>4 x O:<br>So the                                    | I x S: I x 32<br>4 x O: 4 x I<br>So the relati                                                                                                                       | x 32 = 32<br>4 x 16 = 64<br>relative formula mass = 24 + 32 + 64 = <b>120</b>                                                                                                                                                                   | 6 | Concentration                                    | <ul> <li>No. of moles (0.5) x 6.02 x 10<sup>23</sup> = 3.01 x 10<sup>23</sup><br/>atoms</li> <li>Concentration is the amount of substance in a specific<br/>volume of a solvent. It can be expressed as mass (in g)</li> </ul>  |                                                                                               | 3                   | Relative<br>formula (or<br>molecular) mass<br>(M <sub>r</sub> ) | The sum of the relative atomic<br>masses of all the atoms shown<br>in the formula                                                                                                                                                                                                                        |  |
| 3                   | % mass of<br>an element<br>in a<br>compound                   | A <sub>r</sub> x <u>No.</u><br>Example: Fir<br>A <sub>r</sub> of Na is 2                                                                                             | <u>of atoms of that element</u> x 100<br>M <sub>r</sub> of the compound<br>d the % mass of O in Na <sub>2</sub> O<br>3; A <sub>r</sub> of O is 16                                                                                               |   |                                                  | per unit volume, g/dm <sup>3</sup> or g dm <sup>-3</sup> or mol<br>volume of solvent, mol/dm <sup>3</sup> or mol dm <sup>-3</sup><br>only)<br>Concentration (g/dm <sup>3</sup> ) = <u>mass (g)</u><br>volume (dm <sup>3</sup> ) | les in a specific<br><sup>3</sup> ( <b>Chemistry</b>                                          | 4                   | HT only: Mole                                                   | Measurement of the amount of substance                                                                                                                                                                                                                                                                   |  |
| 4                   | The mole &<br>A <sub>r</sub> / M <sub>r</sub>                 | I x O atom<br>M <sub>r</sub> of Na <sub>2</sub> O<br>% mass = A <sub>r</sub><br>The mass of<br>to its relativ<br>So 32 g of so                                       | so $  x 6 =  6 $<br>so $(2 \times 23) + (  \times  6) = 62$<br>$\div M_r \times 100$ so $ 6 \div 62 \times 100 = 26\%$<br>one mole of a substance in grams is equal<br>e atomic mass or relative formula mass.<br>Ilphur is one mole of Sulphur |   |                                                  | Examples: What volume of water do I ne<br>g of common salt to get a concentration<br>Volume = mass ÷ concentration so 25 ÷<br>dm <sup>3</sup><br>Chemistry Only: Concentration = <u>numb</u>                                    | eed to add to 25<br>0.65 g / dm <sup>3</sup> ?<br>- 0.65 = <b>38.5</b><br><u>ber of moles</u> | 5                   | <b>HT only:</b><br>Avogadro's<br>constant                       | The number of atoms,<br>molecules or ions in one mole<br>of a given substance ( $6.02 \times 10^{23}$ ). One mole of any substance<br>contains the same number of<br>particles as the number of atoms<br>in one mole of carbon 12.                                                                       |  |
|                     |                                                               | Number of m<br>Example: how<br>A <sub>r</sub> of S is 32<br>So mass in g                                                                                             | oles = $\frac{\text{mass in g (of an element or compound)}}{M_r \text{ (of the element or compound)}}$<br>w many moles is 48 g of sulfur?<br>divided by A <sub>r</sub> is 48 ÷ 32 = <b>1.5 moles</b>                                            |   |                                                  | (moi/am <sup>2</sup> ) volu<br>Calculate the number of moles in a 0.55<br>with a concentration of 0.35 mol/dm <sup>3</sup><br>No. of moles = concentration x volume<br>0.35 x 0.55 = <b>0.19 moles</b>                          | dm <sup>3</sup> solution                                                                      | 6                   | Uncertainty                                                     | The range of values within<br>which the true value is<br>expected to lie. So for example<br>a volume of gas collected<br>would be 10cm <sup>3</sup> plus or minus<br>1cm <sup>3</sup> so expressed as 10cm <sup>3</sup><br>+/- 1cm <sup>3</sup> so true value is<br>anywhere between 9-11cm <sup>3</sup> |  |

|      | ই    |
|------|------|
|      |      |
| Beck | foot |

Topic: Quantitative Chemistry

Year Group: 11



| Calculations Types III |                         |                                                                                                                                                                                                                                                                                                       | Mass Conservation in Chemical Reactions                              |                                                                                                                                                           |                                                     |                                                                                                                                                                                                  | Key Vocabulary     |                                         |                                                                                                                           |
|------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 5                      | Chemistry<br>Only       | The amount of product formed in a reaction compared<br>to the maximum theoretical mass that could be<br>produced as a percentage                                                                                                                                                                      | Ι                                                                    | The law of mass<br>conservation in terms of a<br>chemical reaction                                                                                        |                                                     | The total number of each type of atom in a chemical reaction is the same before and after the reaction                                                                                           | 7                  | Thermal decomposition                   | Reaction where heat<br>causes a substance to<br>break down into simpler                                                   |
|                        | Percentage<br>yield (%) | percentage yield = $\frac{\text{mass of product actually made}}{\text{maximum theoretical mass of product}} \times 100$                                                                                                                                                                               | 2 How can we show<br>conservation of mass in a<br>chemical equation? |                                                                                                                                                           | ass in a                                            | The total $M_r$ of all the reactants will be equal to the total $M_r$ of all the products                                                                                                        | 8                  | <b>HT only</b> :<br>Limiting reactant / | The reactant in a reaction that determines the                                                                            |
|                        |                         | Example: 25g of salt was produced in a reaction but the expected mass was 80g. What is the % yield?<br>25 ÷ 80 × 100 = 31.3%                                                                                                                                                                          |                                                                      | Why might mass appear to go up in a reaction?                                                                                                             |                                                     | Due to one or more reactants being a gas found in air, that 'adds on' to the substance                                                                                                           |                    | reagent                                 | amount of products<br>formed. Any other<br>reagents are in excess &                                                       |
| 6                      | Chemistry<br>Only       | A way of measuring what percentage of the mass of all<br>the atoms in the reactants ends up in the desired                                                                                                                                                                                            | 4 Why might mass ap                                                  |                                                                                                                                                           | ppear to                                            | One of the products is a gas that escapes                                                                                                                                                        |                    |                                         | some of them will be left<br>over, unreacted                                                                              |
|                        | Atom<br>economy         | product<br>atom economy = relative formula mass of desired product<br>relative formula mass of all reactants × 100                                                                                                                                                                                    |                                                                      | HT only: Reacting Mass Calculations: the steps         Example question       What mass of calcium chloride (CaCl <sub>2</sub> ) is produced when 3.7g of |                                                     |                                                                                                                                                                                                  | 9                  | <b>HT only</b> :<br>Excess              | When the amount of a reactant is greater than the amount that can react                                                   |
|                        |                         | Example: The reaction below is used to produce calcium<br>oxide (CaO). Calculate the atom economy of the<br>reaction:<br>$CaCO_3 \rightarrow CaO + CO_2$<br>$M_r$ of CaO = 40 + 16 = 56 (desired product)<br>$M_r$ of CaCO_3 = 100 (Formula mass of all reactants)<br>Therefore, 56 ÷ 100 × 100 = 56% |                                                                      | Calcium ny<br>hydrochlor                                                                                                                                  |                                                     | Invidroxide (Ca(OH) <sub>2</sub> ) reacts with an excess of Iloric acid (HCI)?                                                                                                                   |                    | Chemistry<br>Only:                      | The amount of product formed in a reaction                                                                                |
|                        |                         |                                                                                                                                                                                                                                                                                                       | balanced equation &<br>identify what we<br>know & don't know         | 3.7g ?                                                                                                                                                    |                                                     |                                                                                                                                                                                                  | Yield<br>Chemistry | A technique used to find                |                                                                                                                           |
|                        |                         |                                                                                                                                                                                                                                                                                                       | 3                                                                    | Work out the moles<br>of what you know                                                                                                                    | Ca(OH) <sub>2</sub> +<br>3.7 ÷ 74<br>= 0.05 mol     | 2HCl —> CaCl <sub>2</sub> + 2H <sub>2</sub> O Remember moles = mass $\div$ Mr<br>Mr of Ca(OH) <sub>2</sub> is 74                                                                                 |                    | <b>Only:</b><br>Titration               | the concentration of a solution using a solution of known concentration                                                   |
|                        | Chemistry<br>Only       | y 1 mole of a gas at room temperature (20 <sup>0</sup> C) and pressure<br>(1 atm) occupies a volume of 24dm <sup>3</sup>                                                                                                                                                                              |                                                                      | Check ratio in the balanced equation                                                                                                                      | I unit of C<br>So whatev<br>the same r              | CaCl <sub>2</sub> is formed from I unit of Ca(OH) <sub>2</sub><br>er moles of what you have worked out (Ca(OH) <sub>2</sub> ) will make<br>noles of what you need to work out (calcium chloride) | 12                 | <b>Chemistry only:</b><br>Concordant    | Two or more results<br>from titration where the<br>values are very close<br>together (within 0.10cm <sup>3</sup> )        |
|                        | Gas volumes             | <b>Volume of gas =</b> $\frac{\text{Mass of gas}}{M_t \text{ of gas}} \times 24$ in g<br><b>Example:</b> What volume will 88g of CO <sub>2</sub> gas occupy at<br>room temperature & pressure?<br>Volume = mass ÷ M <sub>r</sub> x 24 so 88 ÷ 44 = 2 x 24 = 48 dm <sup>3</sup>                        | 5                                                                    | Calculate the<br>number of moles of<br>what you don't                                                                                                     | We will m<br>in the equa                            | We will make 0.05 moles of $Ca(OH)_2$ as the ratio of both compounds in the equation is 1:1                                                                                                      |                    |                                         |                                                                                                                           |
|                        |                         |                                                                                                                                                                                                                                                                                                       | 6                                                                    | know<br>Calculate the mass<br>of what you don't<br>know                                                                                                   | So in the la<br>Mass = M <sub>r</sub><br>III × 0.05 | ast step we are converting moles to a mass in grams<br>x Moles M <sub>r</sub> of CaCl <sub>2</sub> is 111<br>= <b>5.6g</b>                                                                       | 13                 | Chemistry only:<br>End point            | The moment when the<br>indicator changes colour<br>in a titration showing that<br>the moles of acid & alkali<br>are equal |