Subject: Science (Chemistry)

## Calculations Types II

| 5 | HT Only: <br> The mole \& Avogadro's Constant | A mole of a substance ALWAYS contains the same number of molecules/ions/particles/atoms - this is called Avogadro's Constant: 1 mole $=6.02 \times 10^{23}$ $\text { number of moles }=\frac{\text { number of particles }}{6.02 \times 10^{23}}$ <br> Example: How many atoms are in 11.5 g of sodium? <br> - Calculate number of moles first $=11.5 \div 23=0.5$ moles <br> - No. of moles $(0.5) \times 6.02 \times 10^{23}=3.01 \times 10^{23}$ atoms |
| :---: | :---: | :---: |
| 6 | Concentration | Concentration is the amount of substance in a specific volume of a solvent. It can be expressed as mass (in g) per unit volume, $g / \mathrm{dm}^{3}$ or $\mathrm{g} \mathrm{dm}^{-3}$ or moles in a specific volume of solvent, $\mathrm{mol} / \mathrm{dm}^{3}$ or $\mathrm{mol} \mathrm{dm}^{-3}$ (Chemistry only) $\text { Concentration }\left(\mathrm{g} / \mathrm{dm}^{3}\right)=\underset{\text { volume }\left(\mathrm{dm}^{3}\right)}{\text { mass }(\mathrm{g})}$ <br> Examples: What volume of water do I need to add to 25 g of common salt to get a concentration $0.65 \mathrm{~g} / \mathrm{dm}^{3}$ ? <br> Volume $=$ mass $\div$ concentration so $25 \div 0.65=\mathbf{3 8 . 5}$ dm $^{3}$ $\text { Chemistry Only: Concentration }=\frac{\text { number of moles }}{\left(\text { mol } / \mathrm{dm}^{3}\right)} \quad \frac{\text { volume }\left(\mathrm{dm}^{3}\right)}{}$ <br> Calculate the number of moles in a $0.55 \mathrm{dm}^{3}$ solution with a concentration of $0.35 \mathrm{~mol} / \mathrm{dm}^{3}$ <br> No. of moles $=$ concentration $\times$ volume <br> $0.35 \times 0.55=\mathbf{0 . 1 9} \mathbf{~ m o l e s}$ |

## Key Vocabulary

| 1 | Law of Conservation of Mass | No atoms can be created or destroyed in a chemical reaction so the total mass of reactants must equal the total mass of the products |
| :---: | :---: | :---: |
| 2 | Relative atomic mass ( $A_{r}$ ) | Average mass of an element taking into account the mass \& amount of each isotope it contains on a scale where the mass of a ${ }^{12} \mathrm{C}$ atom is 12 |
| 3 | Relative formula (or molecular) mass $\left(M_{r}\right)$ | The sum of the relative atomic masses of all the atoms shown in the formula |
| 4 | HT only: Mole | Measurement of the amount of substance |
| 5 | HT only: Avogadro's constant | The number of atoms, molecules or ions in one mole of a given substance ( $6.02 \times$ $10^{23}$ ). One mole of any substance contains the same number of particles as the number of atoms in one mole of carbon 12. |
| 6 | Uncertainty | The range of values within which the true value is expected to lie. So for example a volume of gas collected would be $10 \mathrm{~cm}^{3}$ plus or minus $1 \mathrm{~cm}^{3}$ so expressed as $10 \mathrm{~cm}^{3}$ $+/-1 \mathrm{~cm}^{3}$ so true value is anywhere between $9-1 / \mathrm{cm}^{3}$ |



