

1	
Half term 4 - January To develop fluency, problem solving and reasoning skills across the 6 key areas of number, algebra, geometry and measures, statistics, probability and ratio and proportion	Half term 5 - March To develop fluency, problem solving and reasoning skills across the 6 key areas of number, algebra, geometry and measures, statistics, probability and ratio and proportion
Algebra - Formulae -Use a formula written in words such as: Total pay = rate per hour x no. of hours + bonus - Derive simple expressions (P) - Derive expressions and formulae and know the difference between an equation and identi-ty. - Derive more complex expressions and formulae - Substitute positive numbers into a simple formula such as $\mathrm{P}=$ $2 L+2 W$ - Use a formula such as $\mathrm{P}=2 \mathrm{~L}+2 \mathrm{~W}$ to find W given P and L - Substitute negative numbers into a simple formula (P) - Use formulae from mathematics and other subjects -Substitute numbers into more complicated formulae such as C $=((\mathrm{A}+1)) / 9$ -Distinguish between an expression, an equation and a formula - Rearrange linear formula such as $p=3 q+5(P)$ Number - Indices -Work out or know simple squares and square roots (P) -Work out or know simple cubes and cube roots - Use the terms square, positive square root, negative square root, cube and cube root -Recall integer squares from 2×2 to 15×15 and the corresponding square roots (P) -Recall the cubes of 2, 3, 4,5 and 10 and the corresponding cube roots - Use index notation and index laws for multiplication and division for positive integer powers - Use standard form (P) Geometry and Measure - Scales - Decide which is the most appropriate unit of measurement to use in everyday situations - Measure the length of a line (P) -Make sensible estimates of lengths - Measure and scale a line (P) - Recognise that measurements to the nearest unit may be inaccurate by up to one half unit in either direction ENTRY LEVEL MATHS: Component 6 - Measures (For nurture students only) Geometry and Measure - Volume and Surface Area -Find the volume of a shape by counting cubes (P) - Find the volume of a cuboid - Convert between cube units such as changing 3.7 m 3 to $\mathrm{cm} 3(\mathrm{P})$ -Find the volume of prisms including cylinders - Convert between square units such as changing 2.6 m 2 to cm 2 (P) - Find the surface area of simple prisms - Find corresponding lengths in similar shapes - Surface area and volumes of spheres, pyramids, cones and composite solids	Statistics - Representing Data - Enderstand the data - handling cycle - ©onstruct and interpret a dual bar chart - Phterpret a pie chart/Construct a pie chart (P) - ©onstruct a histogram for data with equal class intervals - Interpret a line graph - ©onstruct and interpret a scatter graph ENTRY LEVEL MATHS: Component 8-Statistics (For nurture students only) Algebra - Co-ordinates and Graphs -Dse co-ordinates in all four quadrants, such as ($2,-1$), $(-2,-3)$ and ($-2,1$) -Draw lines such as $x=3$, and $y=4$ (P) -Dse simple real-life graphs, such as read values from conversion graphs - Dse real-life graphs to find values, such as distances from distance-time graphs -®nake simple interpretations of real-life graphs including distance time graphs -Siketch quadratic, simple cubic functions and the reciprocal function Geometry and Measures - Loci - Enderstand the idea of a locus - ©onstruct the locus of points equidistant from two fixed points - ©onstruct the locus of points equidistant from two fixed lines - SSolve loci problems, for example the locus of points less than 3 cm from a point Algebra - Quadratics - Draw graphs of simple quadratics such as $y=x 2, y=x 2-4$ and $y=3 \times 2$ -Draw graphs of harder quadratics such as $y=x 2+2 x+1$ - Edentify and interpret roots, intercepts and turning points of quadratic functions graphically Geometry and Measure - Pythagoras - Dse Pythagoras' theorem to find the third side of a rightangled triangle (P) - Dse Pythagoras' theorem to prove that a triangle is rightangled Geometry and Measure - Vectors - $\begin{aligned} & \text { dddition and Subtraction of Vectors }\end{aligned}$ -®uultiplication of a vector by a scalar -Bepresent vectors on a diagram Geometry and Measure - Angles -Recognise acute, obtuse and right angles and name shapes such as parallelogram, trapezium and rhombus (P) -Estimate angles and measures them accurately (P) - Dse angles properties of triangles/straight line including the sum of 180 (P) -Becognise and Calculate interior and exterior angles of a
Formula Expression Equation Indices Rate of change Linear Compound measure Surface area Volume	Construct Interpret Locus Bisect Construct Median Mean Mode Probability Quadratic Vector
Students are able to understand and apply the skills identified above. After each topic in bold (listed opposite), students complete a reflection grid which is marked in class then later teacher marked. This will be stuck in books to record progress and support revision. Students complete one GCSE style assessment once per term. Results are recorded centrally by teachers on a central spreadsheet. Students complete RAG analysis to identify their strengths and areas for development. Assessments are cumulative and grade boundaries reflect GCSE Maths.	Students are able to understand and apply the skills identified above. After each topic in bold (listed opposite), students complete a reflection grid which is marked in class then later teacher marked. This will be stuck in books to record progress and support revision. Students complete one GCSE style assessment once per term. Results are recorded centrally by teachers on a central spreadsheet. Students complete RAG analysis to identify their strengths and areas for development. Assessments are cumulative and grade boundaries reflect GCSE Maths.

