Subiect:		aths		Vear Group:
Scheme tite	To develop fluency, problem solving and reasoning skills across the 6 key areas of number, algebra, geometry and measures, statistics, probability and ratio and proportion	To develop fluency, problem solving and reasoning skills across the 6 key areas of number, algebra, geometry and measures, statistics, probability and ratio and proportion	Half term 3-October To develop fluency, problem solving and reasoning skill across the 6 key areas of number, Ilgebra, geometry and measures, statistics, probabbility and ratio and proportion	\qquad Half term 4 - January develop fluency, problem solving and reasoning skills across the 6 key as of number, algebra, geometry and measures, statistics, probability ratio and proportion
skills	Teacher 1: Algebra and Functions - Proof by Contradiction - (including proof of the irrationality of $\sqrt{ } 2$ and the infinity of primes, and application to unfamiliar proofs). -Simplifying Expressions - Simplify rational expressions including by factorising and cancelling, and algebraic division (by linear expressions only). - Mapping and Functions - Use of functions in modelling, including consideration of limitations and refinements of the models. - ■omposite/Inverse Functions - Understand and use composite functions; inverse functions and their graphs. - Modulus - the modulus of a linear function -Iransformation of Graphs - Partial Fractions - Decompose rational functions into partial fractions (denominators not more complicated than squared linear terms and with no more than three terms, numerators constant or linear). Teacher 2: Trigonometry 2 Part 1 Arcs and Sectors - Work with radian measure, including use for arc length and area of sector - Mnow and use exact values of sin, tan and cos for and multiples thereof. - Small Angle Approximations - Understand and use the standard small angle approximations of sine, cosine and tangent -ltiverse Trig Functions - Understand and use the definitions of secant, cosecant and cotangent and of arcsin, arccos and arctan; their relationships to sine, cosine and tangent; understanding of their graphs; their ranges and domains. - Dosec, Sec and Cot -Pdentities involving Cosec, Sec and Cot - understand and use Construct proofs involving trigonometric functions and identities.	Teacher 1: Parametric Equations Parametric Equations of Curves - Understand and use the parametric equations of curves and conversion between Cartesian and parametric forms. Parametric and Cartesian Equations - Use parametric equations in modelling in a variety of contexts. Differentiation 2 Part 1 Points of inflection - connection to convex and concave sections of curves and points of inflection. Chain Rule, Product Rule, Quotient Rule - Differentiate using the product rule, the quotient rule and the chain rule, including problems involving connected rates of change and inverse functions. Differentiation of $\mathrm{e}, \ln \mathrm{x}$ and $\mathrm{a}^{\wedge} \mathrm{x}$ - and related sums, differences and constant multiples. Understand and use the derivative of $\ln x$. Differentiating Trig Functions - differentiation from first principles for small positive integer powers of x and for and $\sin x$ and $\cos x$ Teacher 2: Trigonometry 2 Part 2 The additional Formulas - Understand and use double angle formulae; use of formulae for and The Double Angle Formulas The R Addition Formulas - Understand and use expressions for in the equivalent forms of or Modelling with Trig Functions - Use trigonometric functions to solve problems in context, including problems involving vectors, kinematics and forces. Correlation and Regression Regression The Product Moment Correlation Coefficient Rank Correlations EARGE DATA SET LESSON - Correlation Probability 2 Conditional Probability - Understand and use conditional probability, including the use of tree diagrams, Venn diagrams, two-way tables. Understand and use the conditional probability formula Modelling with Probability - including critiquing assumptions made and the likely effect of more realistic assumptions.	Teacher 1: Differentiation 2 Part 2 Connected Rates of Change - Construct simple differential equations in pure mathematics and in context, (contexts may include kinematics, population growth and modelling the relationship between price and demand). Differentiation with Parametric Equations and implicit differentiation - Differentiate simple functions and relations defined implicitly or parametrically, for first derivative only. Vectors Vectors in Three Dimensions Calculating with Vectors - Use vectors to solve problems in pure mathematics and in context, including forces and kinematics. Kinematics 2 Projectiles - Understand, use and derive the formulae for constant acceleration for motion in a straight line; extend to two dimensions using vectors. Use calculus in kinematics for motion in a straight line: extend to two dimensions using vectors. Non-Uniform Acceleration in 2 dimensions - Model motion under gravity in a vertical plane using vectors; projectiles. Teacher 2: The Normal Distribution The Normal Distribution - Understand and use the Normal distribution as a model; find probabilities using the Normal distribution. Link to histograms, mean, standard deviation, points of inflection and the binomial distribution. Normal Approximation Choosing Probability Distributions - Select an appropriate probability distribution for a context, with appropriate reasoning, including recognising when the binomial or Normal model may not be appropriate. Hypothesis Tests - Understand and apply the language of statistical hypothesis testing, developed through a binomial model: null hypothesis, alternative hypothesis, significance level, test statistic, 1-tail test, 2-tail test, critical value, critical region, acceptance region, p -value; extend to correlation coefficients as measures of how close data points lie to a straight line and be able to interpret a given correlation coefficient using a given p-value or critical value (calculation of correlation coefficients is excluded). Conduct a statistical hypothesis test for the mean of a Normal distribution with known, given or assumed variance and interpret the results in context. EARGE DATA SET LESSON - Hypothesis Testing Integration 2 - Part 1 Integration of $\llbracket(a x+b) \rrbracket \wedge n$ Integration $\mathrm{e}^{\wedge} \mathrm{x}$ and $1 / \mathrm{x}$, sinkx, coskx and related sums, differences and constant multiples. Integration of Trigonometric Functions Integration of $\left(f^{\prime}(x)\right) /(f(x))$ Fntegrating du/dx f ${ }^{\prime}(\mathrm{u})$ Using Trig Identities in Integration Einding Area - including the area between two curves. Parametric Integration	Teacher 1: Dynamics -Resolving Forces - Understand and use addition of forces; resultant forces; dynamics for motion in a plane. - Friction - Understand and use the model for friction; coefficient of friction; motion of a body on a rough surface; limiting friction and statics. - Newton's Law of Motion - Understand and use Newton's second law for motion in a straight line (re-stricted to forces in two perpendicular directions or simple cases of forces given as 2D vectors); extend to situations where forces need to be resolved (restricted to 2 dimensions). Understand and use New-ton's third law; equilibrium of forces on a particle and motion in a straight line (restricted to forces in two perpendicular directions or simple cases of forces given as 2D vectors); application to problems in-volving smooth pulleys and connected particles; resolving forces in two dimensions; equilibrium of a particle under coplanar forces. Moments - MMoments - Understand and use moments in simple static contexts. -Reaction Forces and Friction in Moments Teacher 2: Integration 2 - Part 2 - $\mathrm{lintegration} \mathrm{by} \mathrm{Substitution} \mathrm{-} \mathrm{Carry} \mathrm{out} \mathrm{simple} \mathrm{cases} \mathrm{of} \mathrm{integration} \mathrm{by}$ substitution and integration by parts; understand these methods as the inverse processes of the chain and product rules respectively. \bullet - Integration by substitution includes finding a suitable substitution and is limited to cases where one substitution will lead to a function which can be integrated; integration by parts includes more than one application of the method but excludes reduction formulae.) - Phtegration by Parts - Phtegration Using Partial Fractions - Integrate using partial fractions that are linear in the denominator. -Differential Equations - Evaluate the analytical solution of simple first order differential equations with separable variables, including finding particular solutions. (Separation of variables may require factori-sation involving a common factor.) - -Inderstand and use integration as the limit of a sum - Interpret the solution of a differential equation in the context of solving a problem, including identifying limitations of the solution; includes links to kinematics
Key Words	Proof by contradiction Simplify Expressions Factorise Mappings Domain Range Functions Inverse Linear Modulus Partial fractions Denominators Radian Arc Sector Trigonometric Relationships Inverse trigonometry	Parametric Cartesian Product Quotient Chain rule Trigonemetrically TPartial fraction Limitation Sum Kinematics Analytical Particular solutions Interpret Method Context Regression Correlation Rank Conditional Assumptions Critiquing	Coefficients Projectile Dimension Model Gravity Kinematics Resolving Friction Motion Equilibrium Coplanar Forces Vectors MMoment Friction Reaction forces Null hypothesis Alternate hypothesis Standard deviation Variance Linear Sequences Aritribution Arithetic Intermatic Integral Parametric Partial Fractions Limitation Sum	Modelling Resolving Friction Motion Equilibrium Coplanar Forces Vectors Moment Friction Reaction forces Integration Interal Parametric Partial Fractions Limitation Sum
	Students are able to understand and apply the skills identified above.	Students ste able to understand and apply the skills identified above.	Students s are able to understand and apply the skills identified above.	Students sare able to understand and aply the skillis identified above.
ssessment method		After each topic in bold (listed opposite), students complete a mini assessment. This may be done as part of home learning and sometimes done in class in test conditions. This is then teacher marked and recorded on the central tracking spreadsheet to inform progress and intervention. Students complete full A level assessments in line with the AQA specification at progress points in the year in line with the school calendar. Assessments are cumulative and grade boundaries reflect actual A Level Maths grade boundaries.	After each topic in bold (listed opposite), students complete a mini assessment. This may be done as part of home learning and sometimes done in class in test conditions. This is then teacher marked and recorded on the central tracking spreadsheet to inform progress and intervention. Students complete full A level assessments in line with the AQA specification at progress points in the year in line with the school calendar. Assessments are cumulative and grade boundaries reflect actual A Level Maths grade boundaries.	After each topic in bold (listed opposite), students complete a mini assessment. This may be done as part of home learning and sometimes done in class in test conditions. This is then teacher marked and recorded on the central tracking spreadsheet to inform progress and intervention. Students complete full A level assessments in line with the AQA specification at progress points in the year in line with the school calendar. Assessments are cumulative and grade boundaries reflect actual A Level Maths grade boundaries.

