Subject:	Maths
Scheme title	Half term 1-June
Purpose of scheme	To develop fluency, problem solving and reasoning skills across the 6 key areas of number, algebra, geometry and measures, statistics, probability and ratio and proportion
skills	Number - Prime Factors - Finding factors and multiples (P) - find the least common multiple (LCM) of two simple numbers - find the highest common factor (HCF) of two simple numbers - find the least common multiple (LCM) of two or more numbers - find the highest common factor (HCF) of two or more numbers - Know Prime Numbers (P) - write a number as a product of prime factors - Basic understanding of indices rules (positive powers only) - Unique factorisation theorem states every integer greater than 1 is prime or can be written as the product of prime numbers. - Completing Venn Diagrams (P) - Use of Venn diagrams for finding HCF and LCM Algebra - Working with symbols - Simplifying expressions $(+-x \div)(P)$ - Expand brackets such as $4(x-3)$ - Expand and simplify an expression such as $3(3 x-7)-2(3 x+1)$ - Finding common factors of terms(P) - Factorise an expression such as $6 x+8$ - Expand and simplify two brackets such as $(x-3)(x+5)$ - Expand and simplify two brackets such as $(3 x+1)(2 x-3)$ - Expanding triple brackets. Ratio, Proportion and Rates of Change - Ratio - Simplify ratio - Divide a quantity in a given ratio - Write a ratio as a linear fraction - Solve simple ratio and proportion problems, such as finding the ratio of teachers to students - Solve more complex ratio and proportion problems such as sharing money in the ratio of age - Express a multiplicative relationship between two quantities as a ratio or fraction - Solve ratio and proportion problems using the unitary method
Key Words	Factor Multiple Prime Product Venn Sequence Series Substitute Expression Expand Probability Mutually exclusive Estimate Frequency
End Point	Students are able to understand and apply the skills identified above.
Assessment method	After each topic in bold (listed opposite), students complete a reflection grid which is marked in class then later teacher marked. This will be stuck in books to record progress and support revision. Students complete one formal assessment per term using diagnostic questions or in written form.

$$
\text { Half term } 2 \text { - September }
$$

To develop fluency, problem solving and reasoning skills across the 6 key areas of number, algebra,
geometry and measures, statistics, probability and ratio and proportion
Number - Surds

- Simplifying Surds(P)
- Multiplying Surds, inc $(3-\sqrt{ } 5)(3+\sqrt{ } 5)(P)$
- Bationalise the denominator of a surd
- Geometric sequences where the common ratio is a surd
- Simplify surds, such as write ($3-\mathrm{V} 5$) 2 in the form a + bV5

Number - Rounding, Estimating \& accuracy (bounds and error intervals)

- ©alculate exactly with multiples of pi
- ®stimate powers and roots of any given positive number
- Bound numbers to different degrees of accuracy, decimal places and significant figures
- Estimating(P)
- ©heck calculations using approximations and estimations
-色pply and interpret limits of accuracy when rounding or truncating ie. Upper and Lower bounds
Algebra - Sequences
-Write the terms of a sequence or a series of diagrams given the nth term
- Write the nth term of a sequence or a series of numbers
- Eind the quadratic nth term
- Substitute into Expressions(P)
- Becognise and use sequences of triangular, square and cube numbers, simple arithmetic progressions,

Fibonacci type sequences, quadratic sequences, and simple geometric progressions (r n where n is an
integer, and r is a positive rational number \{or a surd\}) \{and other sequences\}

Algebra - Equations

- Solve an equation such as $3 x+2=6-x$ and $4(2 x-1)=20$
- Solve an equation such as $4 x+5=3(x+4)$
- Solve and equation such as $x / 2-x / 8=9$ or $(2 x-7) / 4=1$
- Bactorise \& solve a quadratic such as $x 2+4 x+3$
\bullet-Solving Quadratic Equations by Factorising and use of the Formula, Completing the square

Equivalent
Denominator
Reciprocal
Recurring
Ratio
Unitary
Estimate
Approximations
Surds
Rationalise
Geometric
Expand
Linear equation
Factorise
Quadratic
Formula
Inequality
Cyclic Quadrilateral
Students are able to understand and apply the skills identified above.
After each topic in bold (listed opposite), students complete a reflection grid which is marked in class then later teacher marked. This will be stuck in books to record progress and support revision
Students complete one GCSE style assessment once per term. Results are recorded centrally by teachers on a central spreadsheet. Students complete RAG analysis to identify their strengths and areas for
development. Assessments are cumulative and grade boundaries reflect GCSE Maths.

Half term 3 - November

To develop fluency, problem solving and reasoning skills across the 6 key areas of number, algebra, geometry and measures, statistics, probability and ratio and proportion

Number - Indices and Standard Form

- Dse the terms square, positive square root, negative square root, cube and cube root (P)
- Becall integer squares from 2×2 to 15×15 and the corresponding square roots (P)
- Becall the cubes of $2,3,4,5$ and 10 and the corresponding cube roots (P)
- छse index notation and index laws for positive powers
- Dse index notation and index laws for negative powers
- Dse index notation and index laws for fractional powers such as $161 / 2$ and 160.5
- Dse index notation and index laws for fractional powers such as $82 / 3$ and $8-2 / 3$
- ©onvert between ordinary and standard index form numbers
- Øse standard index form for calculations involving multiplication and/or division

Algebra - Formulae

- Distinguish between an expression, an equation, an identity and a formula
- Substitute numbers into formulae such as $C=(A+1) D / 9(P)$
- Derive complex expressions and formulae
- Bearrange linear formulae such as $p=3 q+5$
- Bearrange formulae involving brackets, indices, fractions and square roots
- Bearrange formulae where the variable appears twice

Geometry and Measure - Transformations

- Botation
- Beflection
- Branslation giving the co-ordinates as a vector
- Enlargement (fractional and negative)
-Be able to look at a shape that has been transformed and describe which transformation has taken place describing all the relevant facts
Algebra - Linear Graphs
- Io use and interpret co-ordinates in all 4 quadrants (P).
- ㄲo substitute into expressions./;
- İo plot linear graphs.
- Edentify gradient and intercept
- \mathbb{H} o recognise $y=m x+c$
- $\mathbb{H o}$ recognise horizontal and vertical straight line graphs.
- Eind the equation of a straight line

Probability

- Dse a two-way table to find probability
- Dnderstand mutually exclusive events
- Edentify different mutually exclusive events and know, if they cover all possibilities, then the sum of their probabilities is 1
-बse a probability model to predict the outcomes of future experiments; understand that empirical unbiased samples tend towards theoretical
probability distributions, with increasing sample size
- Dnderstand and use relative frequency
- Broduct rule for counting outcomes efficiently
- Draw tree diagrams
- ®alculate the probability of independent and dependent combined events, including using tree diagrams and other representations, and know the underlying assumptions
- Enderstand independent and non-independent events
- Eind the probabilities of successive independent events
- تind probabilities of successive dependent events
- Whe and/or rules of probability.

Square root
Cube root
Index notion
Gradient
Midpoint
Perpendicular line
Identity
Formula
Rearrange
Transformations
Rotation
Translation
Reflection
Enlargement

Students are able to understand and apply the skills identified above.
After each topic in bold (listed opposite), students complete a reflection grid which is marked in class then later teacher marked. This will be stuck
in books to record progress and support revision.
Students complete one GCSE style assessment once per term. Results are recorded centrally by teachers on a central spreadsheet. Students complete RAG analysis to identify their strengths and areas for development. Assessments are cumulative and grade boundaries reflect GCSE Maths.

Half term 4-January	Half term 5-February
To develop fluency, problem solving and reasoning skills across the 6 key areas of number, algebra, geometry and measures, statistics, probability and ratio and proportion	To develop fluency, problem solving and reasoning skills across the 6 key areas of number, algebra, geometry and measures, statistics, probability and ratio and proportion
Number - Percentages - ©lompare harder percentages, fractions and decimals - ${ }^{[}$Nork out more difficult percentages of a given quantity - Whcrease or decrease by a given percentage - non-calculator and calculator (multiplier) - Express one quantity as a percentage of another - Work out a percentage increase or decrease - Dnderstand how to use successive percentages - ${ }^{\text {NN }}$ ork out reverse percentage problems Algebra - Real life graphs - -hterpret real-life graphs - Eind simple average speed from distance-speed graphs - Recognise from a distance-time graph when the fastest average speed takes place -Discuss and interpret graphs modelling real situations Algebra - Simultaneous Equations - Siolve a pair of simultaneous equations such as $x+y=5$ and $2 x+y=10$ - \$lolve a pair of simultaneous equations such as $x+y=5$ and $2 x-y=10$ - ºlve a pair of simultaneous equations such as $x+3 y=9$ and $3 x-2 y=5$ - Slolve a pair of simultaneous equations such as $y=4 x+5$ and $y=x 2$ - Eranslate simple situations or procedures into algebraic expressions or formulae; derive an equation (or two simultaneous equations), solve the equation(s) and interpret the solution Geometry and Measure - Pythagoras - Dse Pythagoras' theorem to find the third side of a right-angled triangle - Dse Pythagoras' theorem to prove that a triangle is right-angled - Eind the distance between two points from their coordinates - Dse Pythagoras' theorem in 3-D problems Algebra - Inequalities - Dnderstand Inequality signs(P) - Represent and interpret inequalities on a number line, using set notation and on a graph - \$olve an inequality such as $2 x-7<9$ - Bolve an inequality such as $3 x+2 \leq 4-x$ - Eind the integer solutions of an inequality such as $-8<2 x \leq 5$ - Represent linear inequalities in two variables, such as $x+y<7$, as a region on a graph and using set notation - Solve quadratic inequalities - Represent inequalities on a number line - Bepresent and solve inequalities algebraically	Statistics - Collecting data - Understand and name the different types of data - Design and use data collection sheets - Design and use two-way tables for discrete and grouped data - Understand and name other types of data collection methods - Identify possible sources of bias - Understand the data - handling cycle - Understand that increasing sample size generally leads to better estimates - infer properties of populations or distributions from a sample, whilst knowing the limitations of sampling - Select and justify a sampling scheme and a method to investigate a population - Use sampling methods including random and stratified sampling Number - Fractions, Decimals -Add and subtract fractions - Convert between Mixed numbers and Top Heavies(P) -Add and subtract mixed numbers - Multiple and Divide proper fractions(P) - Multiply and divide mixed fractions - Multiply and divide mixed numbers - Solve problems involving fractions - Find the reciprocal of a number - Find one quantity as a fraction of another - Simplify fractions such as $x / 3+x / 5$ and $2(x-1) 2 /(x-1)$ - Add and subtract decimals - Multiply and divide decimals - Understand the effects of multiplying and dividing by numbers between 0 and 1 - Convert fractions to decimals - Calculate exactly with fractions Statistics - Statistical Measures -Calculate the mean, median, mode range for a frequency distribution -Find the modal class, mean, median \& range for grouped data -Find the upper and lower quartiles and calculate inter-quartile range for a frequency distribution Geometry - Constructions and loci - Construct perpendicular bisectors and angle bisectors - Construct perpendicular lines from a point to a line, perpendicular on a line and an angle of 60° - Understand the idea of locus
Multiplier Reverse percentage Real life graph Factorise Proof Simultaneous Pythagoras Hypotenuse Sine Cosine Tangent	Bias Sampling Stratified Sampling Histogram Box plot Quartiles Cumulative Perpendicular Bisector Locus
Students are able to understand and apply the skills identified above.	Students are able to understand and apply the skills identified above.
After each topic in bold (listed opposite), students complete a reflection grid which is marked in class then later teacher marked. This will be stuck in books to record progress and support revision. Students complete one GCSE style assessment once per term. Results are recorded centrally by teachers on a central spreadsheet. Students complete RAG analysis to identify their strengths and areas for development. Assessments are cumulative and grade boundaries reflect GCSE Maths.	After each topic in bold (listed opposite), students complete a reflection grid which is marked in class then later teacher marked. This will be stuck in books to record progress and support revision. Students complete one GCSE style assessment once per term. Results are recorded centrally by teachers on a central spreadsheet. Students complete RAG analysis to identify their strengths and areas for development. Assessments are cumulative and grade boundaries reflect GCSE Maths.

$$
\text { Half term } 6 \text { - April }
$$

To develop fluency, problem solving and reasoning skills across the 6 key areas of number, algebra, geometry and measures, statistics, probability and ratio and proportion

Algebra - Quadratics

- Eactorise and expression such as $\times 2-5 x+14$ or $\times 2-9$
- Solve an equation such as $x 2-5 x+14=0$
- Factorise an expression such as $3 \times 2+7 x+2$ or $3 \times 2-27$
- Simplify an expression such as ($\times 2+3 x+2$)/($\times 2+1$) by factorising
- Solve problems using equations that factorise such as $3 \times 2+7 x+2=0$
- §olve problems using equations such as $2 \times 2-6 x+1=0$ by using the quadratic formula
- Solve an equation such as $x 2-8 x+11=0$ by completing the square
- \$olve problems using equations such as $\times 2+3 x+2=5$ by graphical methods
- Solve a problem using step-by-step deductions
- Derive a proof using reasoning and logic

Geometry and Measure - Trigonometry

- Dse sine, cosine and tangent to calculate a side in a right-angled triangle
- छse sine, cosine and tangent to calculate an angle in a right-angled triangle

Geometry and Measure - Circle theorems

- Enow names of circle parts
- Enow all 6 main circle theorems including problem solving
o1) Diameter subtends 90° at circumference
o2) Angle at centre is double angle at circumference when subtended from same arc
o3) Angles at circumference are equal when subtended from same arc
o4) Cyclic Quadrilateral: opposite angles equal 180°
o5) Alternate segment theorem: angle in triangle opposite to the alternate segment are equal

6) radius made 90° to tangent \& tangents meeting to a point are equal in length

Statistics - Representing data

- تhterpret a pie chart/Construct a pie chart
- ©onstruct a histogram (frequency diagram) with equal class intervals
- ®onstruct a histogram with unequal class intervals
- छlse of Venn diagrams
- ©onstruct and interpret a tables and line graphs for time series data
- ©onstruct and interpret a cumulative frequency diagram for continuous or grouped data
- Dse a cumulative frequency diagram to estimate median and inter-quartile range
-®onstruct and interpret a box plot
- ©ompare two sets of data using a box plot referencing average and spread

Frequency
Modal class
Inter-quartile
Scatter graph
Correlation
Mutually exclusive
Relative frequency
Independent
Conditional
Quadratic
Inequality

Students are able to understand and apply the skills identified above.
After each topic in bold (listed opposite), students complete a reflection grid which is
marked in class then later teacher marked. This will be stuck in books to record progress and support revision.
Students complete one GCSE style assessment once per term. Results are recorded centrally by teachers on a central spreadsheet. Students complete RAG analysis to identify their strengths and areas for development. Assessments are cumulative and grade boundaries reflect GCSE Maths.

