

Year Group:

Half term 2-September	Half term 3-November
To develop fluency, problem solving and reasoning skills across the 6 key areas of number, algebra, geometry and measures, statistics, probability and ratio and proportion	To develop fluency, problem solving and reasoning skills across the 6 key areas of number, algebra, geometry and measures, statistics, probability and ratio and proportion
Algebra - Working with Symbols - Simplify an expression such as $3 x+2 x-x(P)$ adding and subtracting negative integers, recognising similar letters - Bimplify an expression such as $3 x+2-5 x+4$ - 『nderstand the rules of arithmetic as applied to algebra, such as $x-y$ is not the same as $y-x(P)$ \bullet Work out the value of an expression such as $4 y-3 y$ when $x=1$ and $y=2$ (P) substituting values, adding and subtracting negative integers, multiplying a number by a letter - Work out the value of an expression such as $5 x-3 y$ when $x=-2$ and $y=-3$ -Expand brackets such as $x(x+2)$ in context (P) multiplying numbers -Expand and simplify an expression such as $x(2 x+1)-x(2 x-3)(P)$ multiplying, collecting like terms, working with negative numbers - Factorise an expression such as $\times 2+4 \times(P)$ highest common factors/factors, multiplications -Expand and factorise double brackets including the difference of two squares -Represent inequalities on a number line and identify integer solutions - Solve inequalities (P) solving equations (similar methods) Number - Percentages - Enderstand that percentage means 'number of parts per 100' and use this to compare proportions (P) -Work out a percentage of a given quantity (P) simple percentages e.g. 1\%, 5\%, 10\% etc. (P) - Whcrease or decrease by a given percentage - Express one quantity as a percentage of another - Шse ratio notation, including reduction to its simplest form and its links to fraction notation (P) dividing by 2 and knowing when to divide by another number - \$olve simple ratio and proportion problems, such as finding and simplifying a ratio (p) - Work out a percentage increase or decrease - Solve problems involving reverse percentages and percentage change Ratio, Proportion and rates of change - Ratio - Solve more complex ratio and proportion problems - identify and work with fractions in ratio problems - Bolve ratio and proportion problems using the unitary method -Bank Statements and timetables Geometry and Measure - Area and Perimeter - Estimate the area of an irregular shape by counting squares and part squares (P) - ${ }^{\text {WNork }}$ out the area and perimeter of a simple rectangle, such as 5 m by $4 \mathrm{~m}(\mathrm{P})$ timetables - Work out the area and perimeter of a harder rectangle, such as 2.6 m by $8.3 \mathrm{~m}(\mathrm{P})$ multiplying and adding decimals - Eind the area of a triangle and a parallelogram and compound shapes - Name the parts of a circle, 1 identify and apply circle definitions and properties, including: centre, radius, chord, diameter, circumference, tangent, arc, sector and segment - ©alculate the circumference and area of a circle (P) use a calculator - Work out the area and perimeter of a semi-circle (P) use knowledge/formulae from full circles - ©alculate exactly with multiples of pi - ©alculate arc lengths, angles and areas of sectors and circles. Statistics - Scatter Graphs - ®raw a scatter graph by plotting points on a graph - Interpret the scatter graph - Draw a line of best fit on the scatter graph - Whterpret the line of best fit - Edentify the type and strength of the correlation - \mathbb{Z} now that correlation does not imply causation.	Algebra - Equations - Bet up and solve a simple equation such as $5 x=10$ or $x+4=7(P)$ inverse operations - Set up and solve an equation involving fractions such as $x / 4=12$ or $2 x-3=8$ (P) inverse operations - Set up and solve more complicated equations such as $3 x+2=6-x$ or $4 x(2 x-1)=20$ (P) multiplying negative numbers, collecting like terms, inverse operations - Set up and solve an equation such as $4 x+5=3(x+4)$ - \$olve quadratic equations by factorising Geometry and Measure - Constructions - @leasure a line accurately to the nearest millimetre (P) - Measure and draw an angle to the nearest degree (P) - Braw a triangle given three sides, or two sides and the included angle, or two angles and a side - Given the lengths of two sides and a non-included angle may not produce a unique triangle - Đraw a quadrilateral such as a kite, parallelogram or rhombus with given measurements - ©onstruct perpendicular bisectors and angle bisectors - 『se simple scale drawings - Dse scales, such as a scale on a map - ®onstruct and interpret plans and elevations of 3D shapes - @easure and draw lines accurately - இMeasure and draw angles accurately - Øse map scales to find a distance Geometry and Measure - Loci - Dnderstand the idea of a locus (P) constructions, using a compass - ©onstruct the locus of points equidistant from two fixed points - ©onstruct the locus of points equidistant from two fixed lines - Solve loci problems, for example the locus of points less than 3 cm from a point Algebra - Co-ordinates and Graphs - Dse co-ordinates in the first quadrant, such as plotting the point $(2,1)(\mathrm{P})$ - Dse co-ordinates in all four quadrants, such as $(2,-1),(-2,-3)$ and $(-2,1)(P)$ - Draw lines such as $x=3, y=4$ and $y=x$ - Eind approximate solutions to equations using a graph - Edentify lines which are parallel using $y=m x+c(P)$ gradient, defining parallel - Eind the equation of a line through two points or through one point given its gradient. - Dse simple real-life graphs, such as read values from conversion graphs - Dse real-life graphs to find values, such as distances from distance-time graphs - Make simple interpretations of real-life graphs - Enterpret horizontal lines on a distance-time graph - ©larry out further interpretation of real-life graphs, for example find the average speed in km / h from a distance-time graph over time in minutes (P) converting units - \quad lot and interpret graphs (including reciprocal graphs and graphs of non-standard functions in real contexts, to find approximate solutions to problems such as simple kinematic problems involving distance, speed and acceleration Ratio, Proportion and rates of change - Similarity - Select congruent shapes - - nderstand congruence and similarity including the relationship between similar lengths. - ®ompare lengths, areas and volumes using ratio notation and/or scale factors; make links to similarity (including trigonometric ratios)
Factors Multiples Expand Arithmetic Integer Rearrange Formulae Substitute Negative Expressions Inequalities	Inverse Operations Quadratic Measure Scale Accurately Bisectors Locus Equidistant Constructions Quadrants Reciprocal Units Gradient Approximate Units converting
Students are able to understand and apply the skills identified above.	Students are able to understand and apply the skills identified above.
After each topic in bold (listed opposite), students complete a reflection grid which is marked in class then later teacher marked. This will be stuck in books to record progress and support revision. Students complete one GCSE style assessment once per term. Results are recorded centrally by teachers on a central spreadsheet. Students complete RAG analysis to identify their strengths and areas for development. Assessments are cumulative and grade boundaries reflect GCSE Maths.	After each topic in bold (listed opposite), students complete a reflection grid which is marked in class then later teacher marked. This will be stuck in books to record progress and support revision. Students complete one GCSE style assessment once per term. Results are recorded centrally by teachers on a central spreadsheet. Students complete RAG analysis to identify their strengths and areas for development. Assessments are cumulative and grade boundaries reflect GCSE Maths.

Half term 4-January	Half term 5-February	Half term 6-April
To develop fluency, problem solving and reasoning skills across the 6 key areas of number, algebra, geometry and measures, statistics, probability and ratio and proportion	To develop fluency, problem solving and reasoning skills across the 6 key areas of number, algebra, geometry and measures, statistics, probability and ratio and proportion	To develop fluency, problem solving and reasoning skills across the 6 key areas of number, algebra, geometry and measures, statistics, probability and ratio and proportion
Algebra - Formulae Use a formula in words such as: Total pay = rate per hour x number of hours + bonus Use formulae from mathematics and other subjects such as $v=u+$ at Use formulae such as $\mathrm{P}=2 \mathrm{~L}+2 \mathrm{~W}$ to find W given P and $\mathrm{L}(\mathrm{P})$ substitution Derive formulae such as $C=35 h+55$ Derive more complex formulae Distinguish between an expression, an equation and a formula, argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments. Substitute positive numbers into a simple formula such as $\mathrm{P}=2 \mathrm{~L}+2 \mathrm{~W}$ Substitute negative numbers into a simple formula such as $F=1.8 \mathrm{C}+32$ Substitute numbers into more complicated formulae such as $C=\left(3 k^{\wedge} 3+4 d\right) / 9$ Rearranging formulae Geometry and Measure - Area, Length and Volume Find the volume of a shape by counting cubes Find the volume of a cuboid (P) multiplying, cube numbers Convert between square and cube units such as changing $3.7 \mathrm{~m}^{\wedge} 3$ to $\mathrm{cm}^{\wedge} 3$ Find the volume of prisms including cylinders (P) area of a circle Find the surface area of simple prisms Find corresponding lengths in similar shapes Surface area and volumes of spheres, pyramids, cones and composite solids Probability - ®nderstand and use the vocabulary of probability (P) - Dnderstand and use the probability scale (P) - Display outcomes systematically and display systematic listings. - Enderstand the differences between experimental and theoretical probability - Dse a two-way table to find probability - ®nderstand mutually exclusive events - Edentify different mutually exclusive events and know, if they cover all possibilities, then the sum of their probabilities is 1 - छse probability to estimate outcomes for a population - Bnderstand and use relative frequency use a probability model to predict the outcomes of future experiments; understand that empirical unbiased samples tend towards theoretical probability distributions, with increasing sample size calculate the probability of independent and dependent combined events, including using tree diagrams and other representations, and know the underlying assumptions Number - Indices and standard form Work out or know simple squares and square roots (p) Work out or know simple cubes and cube roots (P) multiplying numbers Use standard form (P) working with indices, multiplying numbers by 10, 100, 1000 Use index notation and index laws for multiplication and division for positive integer powers	Geometry and Measure - Transformations - Bevisit rotation/reflection/translation - Enlarge a shape by a positive scale factor (P) multiplying by positive numbers - Eind the measurements of the dimensions of an enlarged shape - Enlarge a shape by a positive scale factor from a given centre - Eind the ratio of corresponding lengths in similar shapes and identify this as the scale factor of en-largement - ®se ratios in similar shapes to find missing lengths - Enlarge shapes with fractional scale factors (P) multiplying fractions Geometry and Measure - Pythagoras - Dse of square numbers, and calculators.(P) -®se Pythagoras' theorem to find the third side of a right-angled triangle (P) multiplying/dividing, being able to square root numbers - Dse Pythagoras' theorem to prove that a triangle is right-angled Geometry and Measure - Measures - Decide which is the most appropriate unit of measurement to use in everyday situations (P) - Measure the length of a line (P) using rulers and pencils - Make sensible estimates of lengths - Dse standard units of mass, length, time, money and other measures. (P) convert measures -Dse compound measures, such as speed and pressure (numerical and algebraic contexts) - Becognise that measurements may be inaccurate by up to one half unit either side - Eonvert between related compound units (speed, rates of pay, prices, density, pressure) in nu-merical and algebraic contexts Ratio, Proportion and rates of change - Proportion - Set up, solve and interpret growth and decay problems. - Solve problems based on compound interest. - ■nderstand that X is inversely proportional to Y is equivalent to X is proportional to $1 / \mathrm{y}$ - Winterpret equations that describe direct and inverse proportion - ©interpret the gradient of a straight line graph as a rate of change; recognise and interpret graphs that illustrate direct and inverse proportion	Geometry and Measure - Properties of Polygons -Recognise and name shapes such as parallelogram, trapezium and rhombus (P) - ■se a standard convention for labelling sides and angles on polygons - Derive the sum of angles in a triangle -®lassify a quadrilateral using its geometric properties - Calculate interior and exterior angles of a quadrilateral/regular polygons Algebra - Quadratics -Draw graphs of simple quadratics such as $y=x 2, y=$ $\times 2-4$ and $\quad y=3 \times 2$ -Draw graphs of harder quadratics such as $\mathrm{y}=\mathrm{x} 2+2 \mathrm{x}+$ 1 - Bse a quadratic graph to estimate x - and y-values, giving answers to an appropriate degree of accuracy - Expand double brackets - Eactorise and solve quadratics including the difference of 2 squares Algebra - Simultaneous Equations - Solve simultaneous equations -Derive simultaneous equations Geometry and Measure - Vectors - ©ddition and Subtraction of Vectors - ®ultiplication of a vector by a scalar Represent vectors on a diagram
Symmetry Reflection Rotation Co-ordinates Parallel Formulae Substitution Expression Equation Volume Area corresponding	Similar Ratio Enlargement Prove Right angle Measure Estimate Pressure Standard form Accurate Positive Index law	Quadratics Sum Quadrilateral Expand Bracket Vector Substitute Scalar Interior Exterior Regular Simultaneous Geometric Parallelogram Rhombus Polygon
Students are able to understand and apply the skills identified above.	Students are able to understand and apply the skills identified above.	Students are able to understand and apply the skills identified above.
After each topic in bold (listed opposite), students complete a reflection grid which is marked in class then later teacher marked. This will be stuck in books to record progress and support revision. Students complete one GCSE style assessment once per term. Results are recorded centrally by teachers on a central spreadsheet. Students complete RAG analysis to identify their strengths and areas for development. Assessments are cumulative and grade boundaries reflect GCSE Maths.	After each topic in bold (listed opposite), students complete a reflection grid which is marked in class then later teacher marked. This will be stuck in books to record progress and support revision. Students complete one GCSE style assessment once per term. Results are recorded centrally by teachers on a central spreadsheet. Students complete RAG analysis to identify their strengths and areas for development. Assessments are cumulative and grade boundaries reflect GCSE Maths.	After each topic in bold (listed opposite), students complete a reflection grid which is marked in class then later teacher marked. This will be stuck in books to record progress and support revision. Students complete one GCSE style assessment once per term. Results are recorded centrally by teachers on a central spreadsheet. Students complete RAG analysis to identify their strengths and areas for development. Assessments are cumulative and grade boundaries reflect GCSE Maths.

