୍ର ସିପ୍ରି Beckfoot		ขี้ยิ kfoot	Further Maths			AS Discrete	Year	12	enjoy learn succeed	
Graphs and Networks		11	Hamiltonian	A Hamiltonian graph is a graph for which a <u>Hamiltonian cycle</u> exists.			Minimum Spanning Trees			
1	Vertex/ Node	A vertex is a point to other vertices	A vertex is a point on a graph that is connected to other vertices by edges. 12 Complete Graph A complete graph is a simple graph in white pair of vertices is connected by an edge. A complete graph with n vertices is denoted to other vertices by edges.		n which every ge. enoted as Kn.	1	Make sure that you learn Kruskal's algorithm properly You are expected to remember this algorithm and be fluent in			
2	Arc/ Edge	An edge is a line graph.	connecting two <u>vertices</u> on a	13	Bipartite Graph	A bipartite graph is one in which the into two sets, and each edge has a ve	vertices fall ertex from		its use. If you do the suggested questions, this shouldn't be a problem.	
3	Weight	A numerical valu with an <u>arc</u> on a	alue (often a distance) associated a network.			one <u>set</u> at one end, and a vertex from at the other end.	n the other set	2	Make sure that you learn Prim's algorithm properly Again, you are expected to	
4	Trail	A trail is a seque one <u>edge</u> (excep next, and no edg	nce of <u>edges</u> in which the end of ot the last) is the beginning of the ge is repeated.			and s vertices in the other, in which e each set is connected to each vertex complete bipartite graph) is denoted	every vertex in in the other (a as Kr,s		remember this algorithm and be fluent in its use. Also note that you need to be able to apply Prim's algorithm both directly to a network, and to an incidence matrix	
5	Cycle	A cycle is a close last <u>edge</u> is the s no <u>vertices</u> are r final <u>vertex</u> is th	ed <u>path</u> (i.e. the end of the start of the first, and repeated except that the e same as the first).	14	Adjacency Matrix	An adjacency matrix (incidence matri representing a graph on a matrix. Roy columns correspond to <u>vertices</u> , and the matrix correspond to the number	x) is a way of ws and the entries in	3	representing a network. Remember which algorithm is which! Sometimes you may be told which algorithm to use, in which case it is essential that you use the right one! Otherwise, you may be asked to use a	
6	Connected Graph	A graph is conne every pair of <u>ver</u>	ected if a <u>path</u> exists between rtices.	15	Simple	of <u>edges</u> from one <u>vertex</u> to another. A graph in which there are no <u>loops</u> a	and in which			
7	Degree	The degree (or o the number of e	order, or valency) of a <u>vertex</u> is nds of <u>edges</u> connecting into it.		Graph	there is no more than one <u>edge</u> conn pair of <u>vertices</u> .	ecting any	4	you carry out one of the algorithms correctly but give the wrong name you will	
8	Subgraph	A subgraph of a the <u>vertices</u> toge	graph is a subset of ether with a subset of the <u>edges</u> .	16	Tree	A tree is a graph in which all <u>vertices</u> connected by <u>edges</u> , but there are no	are o <u>cycle</u> s (a		lose an easy mark. Remember that more than one minimal	
9	Subdivision	A subdivision of new <u>vertex</u> is ad becomes two <u>ec</u> and you add a ve an edge AB, but and BP, then you	a graph occurs when a ded on an <u>edge</u> so that the edge dges. So if there is an edge AB, ertex P so that there is no longer instead there are two edges AP u have subdivided the graph.	17	Euler's Formula	If v is the number of <u>vertices</u> in a connected <u>planar</u> graph, e is the num and f is the number of faces (i.e. disti defined by edges, including the infini- then the following formula is satisfied This is Euler's formula for connected	aber of <u>edges</u> , nct regions te outer one) d:v-e+f=2. planar graphs.		spanning tree may exist for a network. E.g. this network has four possible MSTs, shown below. 2 2 2 2 2 2 2 2	
10	Lоор	An edge edge whose beginning and end both link into the same vertex.Image: Note that the same vertex is an edge of the same		A graph is planar if it can be drawn in dimensions without any of the <u>edges</u>	two crossing.					

	ୁ-ପିଥି	Further Maths		AS Discrete			Year	12	enjoy learn succeed	
Travelling Salesperson Problem			The Route Inspection Problem			Network Flows				
I	Remember that algorithm does n where the route nearest neighbou gives a tour, endi which can be rew	the nearest neighbour not need to start from the point is to start You can start the ur algorithm from any point. This ing up at the starting point, written so that any point can be	I	Make sure you pair up odd vertices correctly If there are more than four odd vertices, writing out all the possible pairings becomes very tedious. In such cases it is usually possible to spot some obvious pairings, and if there are four vertices left		Ι	Flow	A flow along a single <u>sour</u> non-negative that arc. The the <u>feasibilit</u> the <u>conserva</u>	an <u>arc</u> in a network with <u>ce</u> and a single <u>sink</u> is a e number assigned to flow must satisfy <u>y condition</u> and <u>ation condition</u> .	
2	Remember that	a direct link is not always the		easily.		2	Capacity T	The capacity the upper lin	of an <u>arc</u> in a network is nit to the <u>flow</u> along that	
	shortest route Sometimes going via a vertex which is already in the tour produces a quicker route than a direct link. If the graph is not already complete, a matrix of shortest distances between all pairs of vertices should be drawn up.			Remember that the direct route is not always the shortest When pairing up odd vertices, check that you have looked at the shortest route for each pair. This may not always be the direct route!		3	arc. Make sure you understand what is meant by a and its capacity Remember in particular that a must divide a network into two parts, one of w contains the source and the other the sink. A cut the sink is the source and the other the sink. A cut the sink is the source and the source and the sink is the source and the sink is the source and the sou			
	The nearest neighbour algorithm should be performed on a complete graph or a matrix of shortest distances – this is the 'classical problem' as opposed to the 'practical problem'.If you are asked to give a route make sure that you include all vertices visited, including ones		3	When looking for a suitable route, note which edges need to be traversed twice There are usually many possible optimal routes for the route inspection problem.			may include arcs which are directed from the part containing the sink to the part containing the source – remember that such arcs must be included if you are listing the arcs in the cut, but that you do not			
3			Make a list of the edges which need to be traversed twice (if the vertices pairings			include the capacities of such arcs when finding the capacity of the cut.				
	already visited The nearest neighbour algorithm gives you the order of visiting the vertices. However, in the practical problem (rather than the classical problem), in some cases this involves going via a vertex already visited. If you are		involve going via another vertex, write down all edges involved). This should help you to find a suitable route.		4	Remember the maximum flow – minimum cut theorem If you have checked all possible cuts and identified the minimum cut, this tells you the maximum flow for the network.				
	asked for the rou make sure that y	ite rather than just the order, ou include all vertices visited.				5	Remember that forward arcs in the minimum cut must be saturated			
4	Remember that the least upper b (largest) lower bo bound are neares	the greatest lower bound and bound are used. The greatest bund and least (smallest) upper st to the optimal solution.				6	Make sure th and sinks Re supersink in sinks.	nat you can de member to ado networks with	al with multiple sources d a supersource and multiple sources and	
				d City of Konigsberg with 7 Bridges	L		Į			

,_Q	Further Maths	AS Discrete				Year 12		
	Critical Path Analysis		Linear Programming		6	Remember that the optimum solution to an IP problem is not always the integer		
Ι	Make sure that you consider all preceding activities You must consider all of the preceding activities allocating the earliest time to an activity, and you must consider all of the following activities before allocating the latest time for the activity. If you follow the algorithm for calculating early times and late times correctly, this		Make sure that you are fluent with plotting straight-line graphs This is a skill you will need throughout your A level Maths and Further Maths work, so you need to make sure you have really mastered it.			solution closest to the LP solution You will need to check the integer solutions close to the LP solution to see which is best. At this level of work this is the only method available to you. Checking the two or three		
			Define your variables carefully In some questions the variables will be defined for you, but in others you need to define them			enough to find the optimum solution in the problems that you will meet.		
2	should not be a problem. Remember that there may be more than one critical path Any activity for which the late time minus the early time is equal to the duration of the activity is critical.		yourself . It is important to be precise – for example "Let x be the energy drink" would earn no marks. You must write "Let x be the number of litres of the energy drink which are to be produced"		7	Make sure that the integer points you ar considering are within the feasible regio It is not always possible to tell from a grap if an integer point is in the feasible region especially if large numbers are involved.		
	Sometimes there may be branches in the critical path, so that more than one chain of critical activities can be traced from the start event to the finish event of the project. Note that a critical activity must be part of such a chain. If you think an activity is critical, but it is not part of a chain from the start event to the finish event of the project you have made a mistake	3	Use graph paper Always use graph paper to plot your graph, otherwise you may not be able to read of the vertices with sufficient accuracy.			Check that the point you are considering satisfies all the constraints. A good approach is to take the integer values of either side of the exact vertex, and substitute each of these into each of the		
		4	Make sure that you understand the terminology Make sure that you are familiar with all the terms in the glossary.			constraints, to find the largest (or in the case of a minimisation problem, smallest) possible integer value of y which satisfies all the constraints.		
		5	Be careful to shade out the region on the correct side of a constraint line on the graph of an LP problem Check a point to see whether or not it satisfies the constraint. If it does, shade out the region on the other side of the constraint line to the point. If it		8	Be careful to formulate minimisation problems correctly Read questions carefully. Minimisation problems often relate to minimising costs. The constraints will involve mostly 2 2 or inequalities,		

of the constraint line to the point. If it

Notes and Examples for an example.

doesn't satisfy the constraint, shade out the

region on the same side as the point. See the

Μ

r

whereas maximisation problems involve mostly 🛛 🖓 or inequalities.

AS Discrete

Game Theory

- Make sure that you know how to find play-safe strategies Remember that for the first player, you need to find the row minima and take the maximum of these (the maximin strategy), whereas for the second player, you need to find the column maxima and take the minimum of these (the minimax strategy). Make sure that you indicate all the row minima and column maxima.
- Check for stable solutions Remember that 2 you should check for stable solutions before starting to look for the optimal mixed strategy. In examination questions, you will often be asked to "show that the game has a stable solution" or "show that the game does not have a stable solution". To do this, you need to clearly indicate all the row minima and column maxima, and state explicitly that the maximum of the row minima either is, or is not, equal to the minimum of the column maxima. Remember to look for dominance If one or 3 more row and / or column can be ignored due to dominance, the problem is simplified. For example, a 3 × 3 game would normally require linear programming methods, but if dominance allows you to

ignore a row or column, you will be able to use the graphical method. Remember to

check both rows and columns

Draw graphs carefully and interpret them correctly When using a graphical method for a 2 × n game, you do need to be fairly accurate with the graph, as otherwise it

4

5

may not be clear which point you need to consider. Remember that your graph only need cover values of p between 0 and 1. Work out the expected pay-offs for p = 0and p = 1, and use these to draw the lines. Remember that the shaded area is the area under ALL the lines, and that you need the highest point of the shaded area.

Be careful if you need to work with a transposed pay-off matrix To solve n × 2 games, you need to transpose the matrix. Remember that you must change the sign of all the outcomes, since you are now considering the game from the point of view of the second player. Remember that the value of the original game is the negative of the value of the transposed game.

Binary Operations							
I	Make sure you know the meanings of associative and commutative						
	For an associative operation 2 acting on a set (a 2 b) 2 c = a 2 (b 2 c) for all a, b, c in the set						
	For a commutative operation I acting on a set a I b = b I a for all a, b in the set						
2	Make sure that you prove properties for all cases If you are asked to prove that a given operation on a given set is commutative or associative, or that the set is closed, you must prove it for all possible cases. For a small, finite set, a Cayley table will allow you to check for some properties.						

