

Data Presentation (bivariate)

I Remember that correlation does not imply causation
If there is correlation between two sets of variables, it may be the case that one variable causes the other, but this is not necessarily the case. For example, a third variable might affect both variables.

2 Look out for outliers
Just as an outlier can distort the mean in single variable data, an outlier in bivariate data can distort the value of the correlation coefficient. As with single variable data, you should consider whether the outlier could be an error, and whether it should be removed from the data.

4 Remember that you can only multiply

 probabilities to find $P(A \cap B)$ if the events are independentTo take a very simple example, suppose you want to find the probability that when you throw one dice you get a number that is both an odd number and a prime number. P (odd) $1 / 2$ and P (prime) $1 / 2(2,3$ and 5 are prime) but P (odd and prime) is not $1 / 2 \times 1 / 2=1 / 4$ as there are two odd prime numbers, 3 and 5 , so the probability is $2 / 6$ $=1 / 3$. A number being odd, and a number being prime, are not independent.
5 Make sure you understand clearly the difference between $P(A \cap B)$ and $P(A \cup B)$ $P(A \cap B)$ is the probability that both event A and event B occur. It is equal to 0 for mutually exclusive events. $P(A \cup B)$ is the probability that event A or event B or both events A and B occur.
6 Recognise there may be several different methods of solving a probability question Think about whether using a sample space diagram, a Venn diagram or a tree diagram might be helpful

7 Read the question carefully to ensure you have answered the correct problem
For example, there is a difference between the event of a train being late once in two journeys and the event being late on the first journey and not on the second

Probability Distributions

I Always check that the probabilities add up to 1
If they don't, you have made a mistake in your calculations, or there are other possible outcomes which you have not included.

2 Illustrate the data using a vertical line chart A vertical line chart is more appropriate than a bar chart for discrete data like this.

3 Use tables to list results where appropriate This ensures you include all possible outcomes

Maths

5 Check the conditions before using the binomial distribution
 Obviously not all probability questions can be solved using the binomial distribution. If you are in doubt about whether you should be using the binomial distribution check the conditions:
 - random samples of a fixed size, n
 - the probability of success, denoted by p, is constant (hence $q=1-p$ is also constant).
 - the trials are independent
 6 Take care with accuracy when using decimals
 If using decimals, work to at least 3 significant figures. If possible use exact numbers until the end of the calculation.

Hypothesis Testing

\(\left.$$
\begin{array}{|l|l|}\hline \text { I } & \begin{array}{l}\text { Use the correct notation for stating } \\
\text { hypotheses } \\
\text { Set up the hypothesis test carefully, using the } \\
\text { correct notation. First state the definition of } p .\end{array}
$$

There is often a mark given for this.

e.g. Let p be the probability of getting a head.

H_{0}: p=1 / 2

H_{1}: p<1 / 2\end{array}\right]\) NOT $H_{0}=0.2$, or $\left.P(X=0.2)\right] ~ ? ~$| Remember to test a region of probabilities |
| :--- |
| Always work out a region of probabilities (a |
| tail), rather than a point. $P(X \leq 3)$ not $P(X=3)$, |
| for example. |

$\mathbf{3}$	Use the alternative hypothesis for deciding the region Use the alternative hypothesis to help you decide on the region. If $H_{1}: p<1 / 2$ then you will calculate $\mathrm{P}(\mathrm{X} \leq \mathrm{r})$ If $H_{1}: p>1 / 2$ then you will calculate $\mathrm{P}(\mathrm{X} \geq \mathrm{r})$
$\mathbf{4}$	Show your calculations clearly Show clearly what you are trying to calculate. This is much better than a list of fractions and decimals that appears to anybody else randomly ordered! e.g. $\mathrm{P}(\mathrm{X} \geq 4)=1-\mathrm{P}(\mathrm{X} \leq 3)$ $=1-0.6477$ $=0.3523$
$\mathbf{5}$	Make sure that you compare the probability with the significance level You must do this explicitly. For example, $\mathrm{P}(\mathrm{X} \leq 2)<0.05$, so reject H_{0}.
$\mathbf{6}$	Once you have accepted/ rejected H_{0}, give your conclusion in words Decide whether you are to accept or reject H_{0} but then put a final conclusion in words, answering what was requested in the question. Do not state that this "proves" anything but use wording like "the evidence suggests that..."
$\mathbf{7}$	Use at least 3 significant figures when using decimals If using decimals work to at least 3 significant figures, to avoid rounding errors. Where possible use exact numbers until the end of the calculation.
$\mathbf{8}$	Make sure that you compare the observed value with the critical region You must do this explicitly. For example "The critical region is $X \leq 2$. The observed value is 3, which does not lie in the critical region."
$\mathbf{9}$	Read the question carefully Always read the wording in the question carefully. Do not be put off by the data, which may indicate an increase or decrease. In practice we will be setting up the hypothesis test before we have collected the data.Make sure you do not get fooled by the question! Read it carefully to determine whether it is a 1-tail or 2-tail test.

