

Maths

AS Statistics

Collecting Data			a Presentation (single variable)	Data Presentation (bivariate)		
I	Know the sampling techniques You need to know the definition of the term simple random sample. You also need to understand the uses of different types of sampling such as opportunity sampling, systematic sampling, stratified sampling, quota sampling, cluster sampling and self- selected samples.	Ι	Choose the right diagram for the data When working with a large data set in spreadsheet form, you can generate all sorts of diagrams quickly and easily. However, this does not mean that all diagrams are appropriate for the data you are working with.		Remember that correlation does not imply causation If there is correlation between two sets of variables, it may be the case that one variable causes the other, but this is not necessarily the	
		2	Remember that the vertical axis for a histogram is frequency density		both variables.	
2	Be aware of sources of bias Bias may be introduced through an inappropriate sampling method (for example, one which is likely to exclude certain groups of people) or through the method of data collection (for example, through biased questions or through questioning in situations in which truthful answers may not be given).		In a histogram, the frequency represented by each bar is found from the area of the bar, not the height. So for a particular class, frequency = class width x frequency density.	2	Look out for outliers Just as an outlier can distort the mean in single variable data, an outlier in bivariate data can distort the value of the correlation coefficient. As	
		3	Make sure that you choose a sensible number of classes when grouping data This depends on how much data you have to group		with single variable data, you should consider whether the outlier could be an error, and whether it should be removed from the data.	
		4	Make sure you know the difference between measures of central tendency and measures of spread Measures of central tendency (averages) include the mean, median, and mode.You might use these to compare, for example, the heights of two sets of children to see which group on average are taller. Measures of spread include the range, interquartile range, variance and standard deviation. You might use these to compare, for example, the heights of two sets of children to see which group had a greater variation in height.			
3	Remember that different samples may lead to different conclusions For example, if you use the mean and variance of a sample to estimate the mean and variance of the population, different samples will give different results.					
		5	Know how to use your calculator to work out statistical measures Your calculator should have functions for working out the mean and standard deviation of a set of data. Make sure you know how to input the data and how to carry			

out the calculations.

	ୁର୍ଘିତି Beckfoot	Maths		AS Statistics		Year 12	enjoy learn succeed	
Probability				Remember that you can only multiply probabilities to find $P(A \cap B)$ if the events are	Probability Distributions			
I	Make sure your answer is sense If you get a probability which is must have made an error! Wh it's useful to check that the pro- possible answers add up to 1	sible s greater than 1, you en using a tree diagram, obabilities of all the		independent To take a very simple example, suppose you want to find the probability that when you throw one dice you get a number that is both an odd number and a prime number. P(odd) ½ and P(prime) ½ (2, 3 and 5 are prime) but P(odd and prime) is not $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ as there are two odd prime numbers, 3 and 5, so the probability is 2/6 = 1/3 . A number being odd, and a number being		Always check that the probabilities add up to 1 If they don't, you have made a mistake in your calculations, or there are other possible outcomes which you have not included.		
2	Use the correct notation to he answers	help you explain your				Illustrate the data using a vertical line chart A vertical line chart is more appropriate than a bar chart for discrete data like this.		
	Correct notation will make you an examiner to give you the m	ır life easier and will help arks you deserve	5	prime, are not independent. Make sure you understand clearly the difference between P(A ∩ B) and P(A U B)	3	Use tables to list results where appropriate This ensures you include all possible outcomes		
3	Remember that you can only add probabilities to find P(A U B) if the events are mutually exclusive For example, if you want to find the probability that a student chosen at random studies either Maths or English, you need to take into account that some students might study both Maths and English – these events are not mutually exclusive .P(A U B) = P(A)+P(B) only if A and B are mutually exclusive events. A B		$P(A \cap B)$ is the probability that both event A and event B occur. It is equal to 0 for mutually exclusive events. $P(A \cup B)$ is the probability that event A or event B or both events A and B occur.	D				
		6 Recognise there may be several different methods of solving a probability question Think about whether using a sample space diagram, a Venn diagram or a tree diagram might be helpful			OF BEING STRUCK BY LIGHTNING: 300,000 TO ONE			
	$P(A \cup B) = P(A) + P(B) - P(A \cap B) ALWAYS because whenA and B are mutually exclusive, P(A \cap B) = 0$		7	Read the question carefully to ensure you have answered the correct problem For example, there is a difference between the event of a train being late once in two journeys and the event being late on the first journey and not on the second	1	Chance, Part, Colevidence, Things may hoppen for a reason - but as Notiveor David Mand cyclains, that reason is marks, not magis:		

	بِـقَلَٰكَ ِــمَ Beckfoot	Mat	hs	AS Statistics			Year 12 Succeed			
Binomial Distribution			5	Check the conditions before using the binomial distribution		3	Use the alternative hypothesis for deciding the region Use the alternative hypothesis to help you decide on the region.			
I	Read questions very carefully Be careful with the wording in the or many students make careless error misinterpreting the question. Make you recognise the difference between the off and "at least", e.g. "more the	question: s sure that een "more		Obviously not all probability questions can be solved using the binomial distribution. If you are in doubt about whether you should be using the binomial distribution check the conditions:		4	If $H_1: p > \frac{1}{2}$ then you will calculate $P(X \ge r)$ Show your calculations clearlyShow clearly what you are trying to calculate. This is much better than a list of fractions and decimals that appears to anybody else randomly			
2	Use the correct notation and defin variables	t! ne your		 random samples of a fixed size, n the probability of success, denoted by p, is constant (hence q= 1 – p is also constant). the trials are independent Take care with accuracy when using decimals If using decimals, work to at least 3 significant figures. If possible use exact numbers until the end of the calculation.			ordered! e.g. $P(X \ge 4) = 1 - P(X \le 3)$ = 1 - 0.6477 = 0.3523			
	The correct notation is important to explain your answers.Define your variable X clearly at	o help you the start	6			5	Make sure that you compare the probability with the significance levelYou must do this explicitly.For example, $P(X \le 2) < 0.05$, so reject H_0 .			
 of the question Write down val Show what you this is much be and decimals the else randomly of 	 of the question. Write down values of n and p cle Show what you are trying to calc this is much better than a list of and decimals that appears to an else randomly ordered! 	early. culate: fractions ybody				6	Once you have accepted/ rejected H₀, give your conclusion in words Decide whether you are to accept or reject H ₀ but then put a final conclusion in words, answering what was requested in the question. Do not state that this "proves" anything but use wording like "the evidence suggests that"			
)	e.g. $P(X > 1) = 1 - (P(X = 0) + P(X = 0))$ Remember to use the binomial coefficients	1)) efficient	Hypothesis Testing			7	Use at least 3 significant figures when using decimals If using decimals work to at least 3 significant figures, to avoid rounding			
3	Make sure you include the binomia coefficient _n C _r in your method	Take sure you include the binomial oefficient ${}_{n}C_{r}$ in your method		Use the correct notation for stating hypotheses			errors. Where possible use exact numbers until the end of the calculation.			
4	Take care when finding the probab range of values Be careful with inequalities – write working carefully.	oility for a out your		Set up the hypothesis test carefully, using the correct notation. First state the definition of p. There is often a mark given for this. e.g. Let p be the probability of getting a head.		8	 Make sure that you compare the observed value with the critical region You must do this explicitly. For example "The critical region is X ≤ 2. The observed value is 3, which does not lie in the critical region." 			
E	e.g. $P(X \ge 4) = 1 - P(X \le 3)$ = 1 - 0.6477			$H_0: p - \frac{1}{2}$ $H_1: p < \frac{1}{2} [NOT H_0 = 0.2, or P(X = 0.2)]$		9	Read the question carefully			
	= 0.3523	·	2	Remember to test a region of probabilities Always work out a region of probabilities (a tail), rather than a point. $P(X \le 3)$ not $P(X = 3)$, for example.			the data, which may indicate an increase or decrease. In practice we will be setting up the hypothesis test before we have collected the data.Make sure you do not get fooled by the question! Read it carefully to determine whether it is a 1-tail or 2-tail test.			