

Quadratic Graphs \& Equations

| 5 | Be careful when the coefficient of x^{2} is not 1 |
| :--- | :--- | When completing the square for a quadratic with a coefficient of x^{2} which is not 1 , make sure that you take out the coefficient of x^{2} as a factor first.

6 When completing the square, be carefu with signs
Be especially careful when dealing with expressions where the coefficient of x^{2} is negative.
$7 \quad$ Check your answers
After completing the square, you can always check by multiplying out and making sure that you get the original quadratic expression.
8 When solving problems, make sure your answer makes sense
Always look at your answers to problems in the light of the original question. If there are two solutions, do they both make sense, or should one be discarded? Think carefully about the meaning of a negative solution, since this may or may not be a valid solution.

Circles

2 Make sure you know the standard circle equations
2 The general equation of a circle, centre $(0,0)$ and radius r is: $x^{2}+y^{2}=r^{2}$
The general equation of a circle, centre (a, b) and radius r is: $\quad(x-a)^{2}+(y-b)^{2}=r^{2}$

3 Finding the intersection of a line and a curve To find the coordinates of the point(s) where a line meets a curve, you solve the equations simultaneously. The condition for the line to be a tangent to the curve is that there is a repeated root. (For a line and a quadratic curve this means that the discriminant of the resulting quadratic equation is 0 , i.e. $b^{2}-4 a c=0$).

To find the coordinates of the point(s) where two curves meet you solve their equations simultaneously
4 You are expected to know these circle properties:
(i)the angle in a semicircle is a right angle (ii)the perpendicular from the centre of a circle to a chord bisects the chord
(iii) the tangent to a circle at a point is perpendicular to the radius through that point These circle properties are often useful in examination questions. Keep them in mind when answering questions involving circles
In most questions involving coordinate geometry, it is helpful to draw a sketch diagram. It does not need to be accurate, but it will help to give you a rough idea of the answer you might expect. (For a line and a quadratic curve this means that the

Sketching Graphs of Functions

| Make sure that you know the basic rules
in a sketch graph
If you are asked to sketch a graph, you do NOT need to plot points. You should show the basic shape of the graph, and label the points where the graph cuts the x -axis and the y-axis.

5 Know how to find intersection points of graphs
Finding the intersection points of $y=f(x)$ and $y=g(x)$ is equivalent to solving the equation $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$. Sketch graphs can be helpful to give you an idea of the number of roots and their approximate locations

Transforming Graphs

- Be careful with signs and directions when dealing with translations
- Remember that the transformation $y=f(x)+a$ translates the graph of $f(x)$ upwards if a is positive and downwards if a is negative.
- Remember that the transformation $f(x+a)$ translates the graph of $f(x)$ to the left if a is positive and to the right if a is negative. Students often get this the wrong way round.
2 Be careful with scale factors when dealing with stretches
- Remember that the transformation $y=a f(x)$ stretches the graph of $f(x)$ by a scale factor a parallel to the y-axis. - Remember that the transformation $y=f(a x)$ stretches the graph of $f(x)$ by a scale factor 1 /a parallel to the x-axis. So if a is greater than 1 , the graph is compressed, and if a is less than 1 , the graph is stretched. Again, students often get this the wrong way round.

Dividing \& Factorising Polynomials

1	Always check your work carefully It is very easy to make silly mistakes when manipulating algebraic expressions.
2	Make sure that you can divide polynomials with confidence Try the different methods (long division, inspection or using a table) and choose the one that you feel most comfortable with. Get lots of practice until you feel really confident. Remember that you can check your answer by multiplying.
3	Take care with signs Be careful about signs when using the factor theorem:
4	When dividing a polynomial, remember that you can check by multiplying You can also check the solutions of an equation by substitution.

Binomial Expansion

| When using the binomial expansion, make sure that you remember to raise the whole term to the appropriate power
e.g. in the expansion of $(1+2 x)^{n}$, remember that $(2 x)^{r}=2^{r} x^{r}$.
x Wrong: $\quad(2+3 x)^{3}=2^{3}+3 \times 2^{2} \times 3 x+3 \times 2 \times 3 x^{2}+3 x^{3}$
\checkmark Right: $\quad(2+3 x)^{3}=2^{3}+3 \times 2^{2} \times(3 x)+3 \times 2 \times(3 x)^{2}+(3 x)$
$=8+36 x+54 x^{2}+27 x^{3}$

Make sure that you can use the formula for binomial coefficients confidently You need to know what is meant by ${ }_{n} \mathrm{C}_{\mathrm{r}}$-this could be tested in your examination, and you may need to show that you know this formula rather than just using Pascal's triangle.

Make sure you can find specific binomial coefficients efficiently
If asked to find a particular term in a binomial expansion, don't do the full expansion (which would waste a lot of time), just find the coefficient you need, making sure you use the right binomial coefficient.

Also, remember that ${ }_{n} \mathrm{C}_{\mathrm{r}}={ }_{\mathrm{n}} \mathrm{C}_{\mathrm{n}-\mathrm{r}}$

Maths

Trigonometric Functions

\| You should know the exact values for certain angles
You will often need to use exact values of $\sin \theta, \cos \theta$ and $\tan \theta$ when $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}$, 60° or 90°, not the rounded values from your calculator.

2 You must be able to accurately draw trigonometric graphs and know their properties
Make sure you can draw accurate sketches of the graphs of $y=\cos \theta, y=\sin \theta$ and $y=\tan \theta$, and that you know their symmetries and periodic properties.

Trigonometric Equations

I	Check that the roots are in the range asked for Make sure that you check what range the roots should lie in.

2 Remember to factorise instead of cancelling Never cancel terms like $\sin \theta$ or $\cos \theta$. Always factorise instead. For example, in an equation like $\sin \theta-\sin \theta \cos \theta=0$, do not cancel out the term $\sin \theta$ because you will lose the roots to the equation $\sin \theta=0$. Instead, take out the factor $\sin \theta$ to give $\sin \theta(1-\cos \theta)=0$.
3 You must be able to draw trigonometric graphs accurately and know their properties
Make sure you know how to sketch the graphs of $\mathrm{y}=\cos \mathrm{x}, \mathrm{y}=\sin \mathrm{x}$ and $\mathrm{y}=\tan \mathrm{x}$ and their properties

4 Be careful when solving equations of the form sinax $=k$
Think about the number of roots you expect to obtain.

Sine and Cosine Rules

I	Try geometry first when finding angles Make sure that you check whether any missing angles can be found using geometry first.
$\mathbf{2}$	When finding angles, check for equivalent values Make sure when you use the sine rule to find a missing angle, θ, that you check to see whether $180^{\circ}-\theta$ is also a solution.
$\mathbf{3}$	Check that all units are the same Make sure you check that all the units are the same so you are not mixing, say, kilometres and metres.
$\mathbf{4}$	Check your calculator mode Make sure your calculator is in degrees mode and not in radians mode.
$\mathbf{5}$	Be careful not to lose accuracy through rounding Make sure you never round a number until you reach your final answer.

\square

Maximum and Minimum Points

Take care which side of the stationary point you test the gradient
When identifying whether a stationary point is a maximum or minimum by testing the sign of gradient either side of the stationary point, make sure you work from left to right, so you find the gradient at a value of x BEFORE the stationary point first, then at a value of x AFTER the stationary point

When testing the gradient either side of a stationary point, make sure the points you test are close enough to the stationary point you are investigating Otherwise, if there are two stationary points very close together, you may come to the wrong conclusion when identifying the stationary point.

S is a minimum point between a and b , but the gradient is negative at a and negative at b. This error is caused by there being two stationary points close together, both of which are between a and b.

Maximum and Minimum Points

3 Remember that you can't use the second derivative test when both the first and second derivatives are zero If the second derivative is zero, use the gradient method

4 In a maximum or minimum problem, make sure that you answer the question For example, in a problem involving maximising the volume of a shape, make sure that you calculate the actual maximum volume obtained from the stationary value if you are asked for this.

5 Draw diagrams
When dealing with problems involving maximising or minimising, you should draw a clear diagram, which will help you to write down appropriate equations

Working with Vectors

\| Use vector notation correctly
Remember that in handwriting you should underline vectors, or in the case of a vector joining two points, use an arrow above,
e.g. $\overrightarrow{\mathrm{AB}}$

2 Make sure you know how to find the resultant of two vectors
To find the resultant of two or more vectors simply add them together.

3 Make sure you know how to find the vector joining two points

$$
\text { The vector } \overrightarrow{\mathrm{AB}} \text { is found by } \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}
$$

4
Make sure that you know how to find a unit vector
To find a unit vector in the same direction as a given vector, a, you divide by the magnitude, $|\mathbf{a}|$

Finding the area under a curve

\| Remember to integrate when calculating a definite integral!
Don't forget to actually carry out the integration. The expression you write in the square brackets must be the integrated function.

Example: Evaluate: $\int_{0}^{1}\left(x^{3}+1\right) \mathrm{d} x$
\boldsymbol{X} Wrong $\int_{0}^{1}\left(x^{3}+1\right) \mathrm{d} x=\left[x^{3}+1\right]_{0}^{1}=\left(1^{3}+1\right)-(0+1)=1 \quad \mathrm{X}$
\checkmark Right $\quad \int_{0}^{1}\left(x^{3}+1\right) \mathrm{d} x=\left[\frac{1}{4} x^{4}+x\right]_{0}^{1}=\left(\frac{1}{4}+1\right)-(0+0)=\frac{5}{4} \checkmark$
2 Don't add ' $+c^{\prime}$ inside the square brackets
Remember, you don't need an arbitrary constant when evaluating a definite integral.

3 Be careful not to mix up indefinite and definite integrals
Definite integrals have limits of integration - numbers on top and bottom of the integral sign, whereas indefinite integrals don't!

Example:

$$
\begin{array}{ll}
\int x^{2} \mathrm{~d} x=\frac{1}{3} x^{3}+c & \text { - Indefinite } \\
\int_{0}^{1} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{1}==\frac{1}{3}-0=\frac{1}{3} & \text { - Definite }
\end{array}
$$

Be careful with signs

When you are working out a definite integral it is very easy to make mistakes with signs, especially when dealing with negative limits. Use brackets to make your working clear.

5 Be clear whether you are dealing with an area or just a definite integral
If you are dealing with an area, this may be above or below the x-axis. For an area below the x-axis, the value of the definite integral will be negative. Since an area cannot be negative, you should give your final answer in such cases as positive. However, if you are simply asked to find a definite integral, with no reference to area, then you do not need to think about graphs at all, but just give the answer as calculated directly from the definite integral, which may be positive or negative

Fractional and Negative Indices

| Be careful when integrating negative and fractional powers
Make sure that you add 1 to the index correctly, and remember that you must divide by the new index.

Remember that you cannot yet integrate x^{n} for $\mathrm{n}=-1$
The rule for integrating x^{n} is valid for all values of n except for $n=-1$. You will learn to integrate $1 / \mathrm{x}$ in Year 13.
3 Look out for discontinuities when finding the area under a graph
Remember that you cannot integrate across a discontinuity.

Exponential Functions \& Logs

I Make sure that you know the equivalent log relationships
It can be difficult to develop a "feel" for logarithms. Keep the equivalent relationships $\log _{\mathrm{a}} \mathrm{b}=\mathrm{c} \Leftrightarrow \mathrm{a}^{\mathrm{c}}=\mathrm{b}$ firmly in mind,
remembering that the base of the logarithm
is also the base of the index. The value of
$\log _{a} b$ is the answer to the question: "What
power must I raise a to in order to get b?"

2
Remember the log laws
Make sure that you know the laws of logarithms. They are often useful for simplifying expressions.

3 Remember that exponentials and logarithms are inverses of each other This is important in solving equations Equations involving exponentials can be solved by taking logs of both sides, and equations involving logs can be solved using powers

Natural Logs \& Exponentials

I Learn and be confident using the laws of indices and logarithms
Make sure that you know the rules of logarithms and of indices, so that you can manipulate expressions involving exponentials and logarithms confidently.
2 Make sure that you remember that the exponential and logarithm functions are the inverses of each other
Remember that the exponential function and the natural logarithm function are inverse functions; so you can "undo" an exponential function by using natural logarithms, and you can "undo" a natural logarithm by using exponentials.

e careful with signs

In an exponential decay model, be careful not to lose the minus sign. Remember that the logarithm of a number less than 1 is negative, and you can rewrite e.g. $\ln \frac{1}{2}$ as $-\ln 2$

$$
\begin{aligned}
& \text { Three main laws: } \\
& \log _{a} x+\log _{a} y=\log _{a} x y \\
& \log _{a} x-\log _{a} y=\log _{a}\left(\frac{x}{y}\right) \\
& \log _{a}\left(x^{k}\right)=k \log _{a} x
\end{aligned}
$$

Modelling Curves with Logs

- You should be able to convert polynomia functions into linear equations using logs Make sure that you can show how the relationships $y=k x^{n}$ and $y=k a^{x}$ can be written in the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ by using logarithms.
2 Make sure you plot the right quantities against each other
Check the linear form of the relationship to see what you need to plot

$$
y=k x^{n} \Rightarrow \log y=\log k+n \log x
$$

Plot $\log y$ against $\log x$
$y=k a^{x} \Rightarrow \log y=\log k+x \log a$
Plot $\log y$ against x
3
Remember to use inverse logs where appropriate to find the unknown constant Make sure you know the relationships between the unknown constants and the gradient and intercept of the graph that you have plotted.
$y=k x^{n} \Rightarrow \log y=\log k+n \log x$
Gradient $=n$, intercept $=\log k$
$y=k a^{x} \Rightarrow \log y=\log k+x \log a$
Gradient $=\log a$, intercept $=\log k$

