ୁର୍ଘ୍ Beckf	Maths		AS Pure		Year 12	enjoy learn succeed
Solv	ving Problems	No	otation and Proof	Sur	rds	
I	If you're not sure what to do, try something! When you are solving a problem, it may not be immediately obvious what you should do. Don't be afraid to try something just because you think it may not work! Often, trying something that doesn't work	 2	Be careful with notationThe force in this equation is the driving forceof the engine only.Think carefully about the meaning ofmathematical statementsRemember that if a statement is true, this	Ι	form Try to get into the hab of the simplest surd po it usually makes them e.g. write	ite surds in their simplest it of writing surds in terms ossible whenever you can – easier to work with. 8 as 2√2 12 as 2√3
	helps you to understand the problem better, and leads you to a more useful approach.		does not necessarily mean that its converse is true. A => B does not mean that B <= A. If the converse is true, then you can write $A \Leftrightarrow B$.	2		plying surds you are multiplying two surds together, you must
2	Check any formula you have found When you find a mathematical expression to describe a particular situation, make sure that it is correct for a simple example.	3	Make sure that a proof really is a proof Remember that to prove a result, you must show that it is true in all possible cases. If it is not possible to test all cases, then you need		you would an algebrai one bracket must be n the other.	them in the same way as c expression –each term in nultiplied by each term in
3	Think about assumptions in modelling When modelling a real life situation, always think about the assumptions that you are		to generalise			$ \frac{\sqrt{2}}{\sqrt{2}}(3-\sqrt{2}) = 3-(\sqrt{2})^{2} = 3-2 = 1 \textbf{X} $ $ \frac{\sqrt{2}}{\sqrt{2}}(3-\sqrt{2}) = 3-\sqrt{2}+3\sqrt{2}-(\sqrt{2})^{2} $
	making, and whether they are realistic.		b-Surd-lutely 2: I will understand surds and how to manipulate			$= 3 + 2\sqrt{2} - 2$ $= 1 + 2\sqrt{2} \qquad \checkmark$
	6/3 + 3,		them.	3	Remember that when	aalising the denominator you are rationalising a t multiply top and bottom

by the same expression.

X <u>Wrong</u> $\frac{2+\sqrt{3}}{1-\sqrt{2}} = \frac{(2+\sqrt{3})(2-\sqrt{3})}{(1-\sqrt{2})(1+\sqrt{2})}$ **X**

 $\checkmark \quad \underline{Right} \qquad \frac{2+\sqrt{3}}{1-\sqrt{2}} = \frac{(2+\sqrt{3})(1+\sqrt{2})}{(1-\sqrt{2})(1+\sqrt{2})} \quad \checkmark$

Ind	lices		Make sure that you can multiply out and factorise confidently These algebraic skills are vital in many areas	Qu	adratic Graphs & Equations	
I	Make sure you use the law of indices in appropriate situations		of mathematics at this level. Practise them until you can do them confidently.	5	Be careful when the coefficient of x² is not 1 When completing the square for a quadratic	
	Remember you cannot apply the laws of indices to the sum or difference of two expressions involving indices (although you may be able to simplify in another way)	2	Remember the relationship between the solutions of a quadratic equation and the corresponding quadratic graph		with a coefficient of x^2 which is not 1, make sure that you take out the coefficient of x^2 as a factor first.	
	Wrong $a^2 + a^5 = a^7$ X where the correspondence of the x-axis. The x-axis where the x-axis is the x-axis where the x-axis is the x-axi	The solutions of a quadratic equation tell you where the corresponding quadratic graph crosses the x-axis. This is very useful in sketching quadratic graphs.	6	When completing the square, be careful with signs Be especially careful when dealing with expressions where the coefficient of x ² is		
2		3	Use completing the square to find the turning point (vertex) Remember that you can find the maximum or minimum point of a quadratic from its completed square form.		negative.	
	Look at the base Make sure that you only apply the first two laws of indices to expressions with the same base				Check your answers After completing the square, you can always check by multiplying out and making sure that you get the original quadratic	
	$\frac{Wrong}{2^2 \times 3^5} = 6^7 \textbf{X}$	4	Recognise the nature of the vertex Make sure that you know how to tell		expression.	
3	$\checkmark \underline{Right} \qquad 2^2 \times 2^5 = 2^7 \checkmark$		whether a quadratic graph has a maximum or a minimum point.	8	When solving problems, make sure your answer makes sense Always look at your answers to problems in	
	Remember the value of a ⁰ a ⁰ is always 1, for any value of a		Axis of Symmetry		the light of the original question. If there are two solutions, do they both make sense, or should one be discarded? Think carefully about the meaning of a negative solution, since this may or may not be a valid solution.	

(turning point)

آگ eck	Maths		AS Pure		Year 12	enjoy learn succeed
	e Quadratic Formula	Ine	equalities	Inec	qualities	
I	Remember how to calculate the discriminant and what information it give you Remember that the discriminant of a quadratic equation gives you useful information about the nature of its soluti so it is often useful to work out the discriminant before you try to solve the equation.		Be careful when writing an inequality the other way roundMake sure that you reverse the inequality sign if you want to write the inequality the other way round \bigstar $\underbrace{Wrong:}_{2x+1 < 3}$ \checkmark $\underbrace{Right:}_{3 < 2x+1}$	4	Sketching a graph or us can help solve inequali When dealing with a qu always sketch a graph o that you can be sure that the correct part as the solu- mange of values! With quadratic inequali	ties adratic inequality, or a number line so at you are selecting solution. ution is the correct ties, make sure that
2	Learn the quadratic formula You will need to use the quadratic formu very often, in many different areas of mathematics, so make sure that you know	2	2x+1>3 Be careful when multiplying an inequality Make sure that you reverse the inequality sign if you multiply by a negative number.		you express the solution either one range of valu If the solution is all valu <u>X Wrong:</u> -2	ies or two.
3	When solving problems, make sure your answer makes sense Always look at your answers to problems the light of the original question. If there two solutions, do they both make sense, should one be discarded? Think carefully	in are or	$\begin{array}{llllllllllllllllllllllllllllllllllll$		If the solution is all valu greater than 1:	2 < x < 1 es less than -2 or < x < -2
	about the meaning of a negative solution since this may or may not be a valid solut		Be careful when dividing an inequality Make sure that you reverse the inequality sign if you divide by a negative number.		✓ <u>Right:</u>	x < -2 or $x > 1$
	$ax^{2} + bx + c = 0$ $x_{1} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}$ $x_{2} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}$		$\bigvee \text{Wrong:} -2x \ge 6x + 4$ $x \ge -3 - 2 \swarrow$ $\checkmark \text{Right:} -2x \ge 6x + 4$ $x \le -3 - 2 \checkmark$		2, foi) = -x*=5x () = foi) = -x*=5x () = foi () = x+1 () = x+1	ACCENT AND

ہے۔ Beck	A Maths		AS Pure				Year 12	enjoy Jeorn succeed		
Sin	Simultaneous Equations			Co-ordinate Geometry			Co-ordinate Geometry			
	Be careful with signs when usine elimination method It's very easy to make mistakes Think about which method to	!	I	Draw a diagram In most questions involving coordinate geometry, it is helpful to draw a sketch diagram. It does not need to be accurate, but it will help to give you a rough idea of the		5	Make sure you underst the gradients of lines for parallel or perpendicula If two lines have gradien The lines are parallel if r	or the lines to be ar. hts m ₁ and m ₂ then:		
2	If one equation gives, say, y in t usually easier to use the substit rather than the elimination me one equation is quadratic, you	erms of x, it is ution method thod. When	2	answer you might expect. Ensure you can calculate the gradient of the line correctly. The gradient of a line, m, is given by			The lines are perpendicular if $m_1 = m_2$ (i.e. if $m_2 = -\frac{1}{m_1}$).			
3	use substitution. Always check your solution Just substitute your solution int original equations to make sure			$m = \frac{\text{change in } y}{\text{change in } x}$ The gradient, m, of the line joining two points, (x_1, y_1) and (x_2, y_2) is given by		6	Make sure you underst how to calculate the dis points The distance, d, betwee and (x ₂ , y ₂), is given by	s tance between two n two points, (x ₁ , y ₁),		
4	Remember that for non-linear equations there may be more solution			$m = \frac{y_2 - y_1}{x_2 - x_1}$			$d = (x_1 - x_2)^2 + (x_1 - x_2)^2 + (x_2 -$			
	When you solve simultaneous e where one is linear and one is o should normally end up with tw unless:	uadratic, you o solutions	3	Make sure you can calculate the y-intercept of a straight-line graph. The y-intercept of a line is where it crosses the y-axis. It is the value of y when x = 0.		7	Make sure you underst how to calculate the mi between two points. The coordinates of the r joining (x ₁ , y ₁), and (x ₂ ,	i dpoint of the line nidpoint, M, of the line		
	there is a repeated root (in whi graph of the linear function is a the graph of the quadratic)		4	Make sure you understand how the standard straight-line equation works. An equation which can be written in the form y=mx + c represents a straight line. m is			$\mathbf{M} = \left(\frac{x_1 + x_2}{2}\right)$	$,\frac{y_1+y_2}{2}$		
	or there are no solutions (in which graph of the linear function doe touch the graph of the quadrat	es not cross or		the gradient and c is the y-intercept.		8		ulate the equation of a tes of two points on it. nd the coordinates of a		

	Beckfoot		AS Pure		Year 12	enjoy Jearn succeed
Cir	rcles	Sk	etching Graphs of Functions	Т	ransforming Graph	าร
	Draw a diagram In most questions involving coordinate geometry, is helpful to draw a sketch diagram. It does not need to be accurate, but it will help to give you a rough idea of the answer you might expect.		Make sure that you know the basic rules about polynomial graphs A polynomial of degree n crosses the x axis at most n times and has at most n–1 turning points. A repeated root means that the graph touches the x-axis at this point.	Ι	Be careful with signs and dealing with translation - Remember that the tra y = f (x) + a translates th upwards if a is positive a negative.	s nsformation e graph of f (x)
2	Make sure you know the standard circle equation The general equation of a circle, centre (0,0) and radius r is: $x^2 + y^2 = r^2$ The general equation of a circle, centre (a, b) and radius r is: $(x-a)^2 + (y-b)^2 = r^2$	s 2	Make sure that you know what a reciprocal graph looks like You should recognise and be able to sketch graphs of the form y=k/x, where k is a constant. You should also know what is		 Remember that the tra f (x + a) translates the gr left if a is positive and to negative. Students often way round. 	aph of f (x) to the the right if a is get this the wrong
3	Finding the intersection of a line and a curve To find the coordinates of the point(s) where a line meets a curve, you solve the equations simultaneously. The condition for the line to be a		meant by an asymptote.Know what is meant by proportionalityIf y is directly proportional to x, then y=kx,where k is a constant.If y is inversely proportional to x, then y=k/x.	2	Be careful with scale fac with stretches - Remember that the tra y = af (x) stretches the gr scale factor a parallel to - Remember that the tra	nsformation raph of f (x) by a the y-axis.
	 tangent to the curve is that there is a repeated root. (For a line and a quadratic curve this means that the discriminant of the resulting quadratic equation is 0, i.e. b²-4ac= 0). To find the coordinates of the point(s) where two curves meet you solve their equations simultaneously. 	A stat there is a repeated root. Indratic curve this means that the resulting quadratic equation is 0, Ites of the point(s) where two A Make sure that you know what is expected in a sketch graph If you are asked to sketch a graph, you do NOT need to plot points. You should show		y = f (ax) stretches the gr scale factor 1/a parallel t is greater than 1, the gra and if a is less than 1, the Again, students often ge round.	raph of f (x) by a to the x-axis. So if a ph is compressed, graph is stretched.	
4	You are expected to know these circle properties (i)the angle in a semicircle is a right angle (ii)the perpendicular from the centre of a circle to chord bisects the chord (iii) the tangent to a circle at a point is perpendicular to the radius through that point These circle properties are often useful in examination questions. Keep them in mind when answering questions involving circles	5	Know how to find intersection points of graphsFinding the intersection points of $y = f(x)$ and $y=g(x)$ is equivalent to solving the equation f $(x) = g(x)$. Sketch graphs can be helpful to give you an idea of the number of roots and their approximate locations		Transformations - Isolated D	

	Beckfoot Maths		AS Pure	Ye	ar 12	enjoy learn succeed
Pol	ynomials (e.g.Cubics) & Graphs	D	ividing & Factorising Polynomials	Bir	nomial Exp	ansion
Ι	When multiplying out brackets, make sure that you know how many terms there should be You can find out how many by multiplying togeth the number of terms in each bracket, so that you know that you have not missed any.		Always check your work carefully It is very easy to make silly mistakes when manipulating algebraic expressions.	I	sure that you term to the a	the binomial expansion, make remember to raise the whole ppropriate power pansion of $(1 + 2x)^n$, remember
2	Make sure that you know the basic rules about polynomial graphs A polynomial of degree n crosses the x axis at mo n times and has at most n–1 turning points. A		Make sure that you can divide polynomials with confidence Try the different methods (long division, inspection or using a table) and choose the one that you feel most comfortable with. Get lots of practice until you feel really confident. Remember that you can		$\begin{array}{c} \textbf{Wrong:} & (2+3x)^3 = 2^3 + 3 \times 2^2 \times 3x + 3 \times 2 \times 3x^2 + 3x^3 \\ & = 8 + 36x + 18x^2 + 3x^3 \\ \textbf{Kight:} & (2+3x)^3 = 2^3 + 3 \times 2^2 \times (3x) + 3 \times 2 \times (3x) \\ & = 8 + 36x + 54x^2 + 27x^3 \\ \textbf{Kight:} & \textbf{Kight:} \\ \end{array}$	
	repeated root means that the graph touches the axis at this point.		check your answer by multiplying.	2	Make sure that you can use the formula fo binomial coefficients confidently	
3	Don't lose easy marks when sketching polynomi You will often be asked to sketch a polynomial which you have already factorised. Remember yo are being asked for a sketch, so you should do thi in your answer booklet and NOT on graph paper. You should certainly not be wasting time plotting		Take care with signsBe careful about signs when using the factor theorem: \checkmark <u>Wrong</u> $f(2) = 0 \Rightarrow (x + 2)$ is a factor \checkmark \checkmark <u>Right</u> $f(2) = 0 \Rightarrow (x - 2)$ is a factor \checkmark		You need to k could be teste may need to a formula rathe triangle.	know what is meant by _n C _r -this ed in your examination, and yo show that you know this er than just using Pascal's
	points. Make sure that your graph does not stop a the axes, that you have shown all the points at which the graph cuts the axes (including the y-axi and that your graph is the correct way up.		When dividing a polynomial, remember that you can check by multiplying You can also check the solutions of an equation by	3	Make sure you can find specific binomial coefficients efficiently If asked to find a particular term in a binomial expansion, don't do the full expansion (which would waste a lot of time) just find the coefficient you need, making sure you use the right binomial coefficient. Also, remember that ${}_{n}C_{r} = {}_{n}C_{n-r}$	
4	Use a graphical calculator with caution If you have a graphical calculator, you may find it useful to check the shape of a graph. However, yo should understandthe principles of graph sketchin and be able to show your reasoning. If you don't choose appropriate scales on a graphical calculato you may not see important features. If you are asked to give exact values for intersections, readi them off a graph may not be adequate	-,	substitution. Binomial Theorem $(a+b)^{n} = \binom{n}{0}a^{n}b^{0} + \binom{n}{1}a^{n-1}b^{1} + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{n}a^{0}b^{n}$ where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$			

Beck	foot	Maths		AS Pure		Year 12	SUCCEEU
Trig	gonometric	Functions	Trig	gonometric Equations	Sir	ne and Cosine Ru	ules
Ι	You should know the exact values for certain angles You will often need to use exact values of sin θ , cos θ and tan θ when θ = 0°, 30°, 45°,		I	Check that the roots are in the range asked for Make sure that you check what range the roots should lie in.	Ι	Try geometry first whe Make sure that you che missing angles can be for first.	eck whether any
	60° or 90°, not t calculator.	90°, not the rounded values from your itor.	2	Never cancel terms like sin 0 or cos 0. Always	2	When finding angles, c values	
2	You must be able to accurately draw trigonometric graphs and know their properties		factorise instead. For example, in an equation like $\sin\theta - \sin\theta\cos\theta = 0$, do not cancel out the term $\sin\theta$ because you will		Make sure when you use the sine rule to find a missing angle, θ, that you check to see whether 180°–θ is also a solution.		
	Make sure you of the graphs of	ke sure you can draw accurate sketches ne graphs of y= cos θ, y = sinθ and tanθ, and that you know their		lose the roots to the equation $\sin\theta = 0$. Instead, take out the factor $\sin\theta$ to give $\sin\theta (1 - \cos\theta) = 0$.		Check that all units are Make sure you check th the same so you are no	nat all the units are
	symmetries and	periodic properties.	3	You must be able to draw trigonometric graphs accurately and know their		kilometres and metres.	
	v *			properties Make sure you know how to sketch the graphs of y= cos x, y= sin x and y= tanx and		Check your calculator r Make sure your calcula mode and not in radian	tor is in degrees
	sin(x)		their properties		5	Be careful not to lose a	ccuracy through
	x			4 Be careful when solving equations of the form sinax = k Think about the number of roots you expect		 rounding Make sure you never round a num you reach your final answer. 	

θ	0°	30°	45°	60°	90°
cos θ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
sin θ	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tan θ	0	$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	undefined

ୁ ସିହି Beckfoot	Maths	AS Pure		Year 12	enjoy jean succeed
Integration Basics	Find	ing the area under a curve	5	Be clear whether you a area or just a definite	•
Don't muddle up the formulae differentiation and integration Example: Given that $\frac{dy}{dx} = x^3$, $\frac{dy}{dx}$ $\times \frac{Wrong}{dx} = \frac{dy}{dx} = x^3 \Rightarrow y = \frac{dy}{dx}$	$3x^2 \mathbf{x}$	Remember to integrate when calculating a definite integral! Don't forget to actually carry out the integration. The expression you write in the square brackets must be the integrated function. Example: Evaluate: $\int_0^1 (x^3 + 1) dx$ \checkmark <u>Wrong</u> $\int_0^1 (x^3 + 1) dx = [x^3 + 1]_0^1 = (1^3 + 1) - (0 + 1) = 1$ \bigstar \checkmark <u>Right</u> $\int_0^1 (x^3 + 1) dx = [\frac{1}{4}x^4 + x]_0^1 = (\frac{1}{4} + 1) - (0 + 0) = \frac{5}{4}$		If you are dealing with above or below the x-a the x-axis, the value of will be negative. Since negative, you should gi in such cases as positiv simply asked to find a o no reference to area, t to think about graphs a answer as calculated d definite integral, which	an area, this may be xis. For an area below the definite integral an area cannot be ve your final answer e. However, if you are definite integral, with hen you do not need it all, but just give the rectly from the
Remember the arbitrary const Always remember to put in the constant –you will lose marks i	e arbitrary	Don't add '+c' inside the square brackets Remember, you don't need an arbitrary constant when evaluating a definite integral.	Fra	negative	gative Indices
examination if you miss it out!	3	Be careful not to mix up indefinite and definite integrals Definite integrals have limits of integration – numbers on top and bottom of the integral sign, whereas indefinite integrals don't!	1	Be careful when integr fractional powers Make sure that you ad correctly, and rememb divide by the new inde	d 1 to the index er that you must
	f(x)	Example: $\int x^2 dx = \frac{1}{3}x^3 + c$ - Indefinite $\int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3} - 0 = \frac{1}{3}$ - Definite	2	Remember that you ca for n= -1 The rule for integrating values of n except for r integrate 1/x in Year 13	g x ⁿ is valid for all n = -1. You will learn to
A = ?	× 4	Be careful with signs When you are working out a definite integral it is very easy to make mistakes with signs, especially when dealing with negative limits. Use brackets to make your working clear.	3	Look out for discontine the area under a graph Remember that you ca a discontinuity.	l I

	ୁଇ Ma Beckfoot	ths	AS Pure		Year 12	enjoy learn succeed		
Exp	ponential Functions & Lo	ogs N	atural Logs & Exponentials	M	Modelling Curves with Logs			
I	Make sure that you know the equivarelationships It can be difficult to develop a "feel" logarithms. Keep the equivalent relationships log _a b = c ⇔ a ^c = b firmly in mind,	or ionships	Learn and be confident using the laws of indices and logarithms Make sure that you know the rules of logarithms and of indices, so that you can manipulate expressions involving exponentials and logarithms		You should be able to functions into linear en Make sure that you can relationships y = kx ⁿ a the form y= mx+ c by u	quations using logs in show how the ind $y = ka^x$ can be written in		
	remembering that the base of the log is also the base of the index. The valu log _a b is the answer to the question: " power must I raise a to in order to ge	e of What 2	2 Make sure that you remember that the exponential and logarithm functions are the inverses of each other	each other Check the linear form o what you need to plot	e right quantities against of the relationship to see $r = \log k + n \log x$			
2	Remember the log laws Make sure that you know the laws of logarithms. They are often useful for simplifying expressions.		natural logarithm function are inverse functions; so you can "undo" an exponential function by using natural logarithms, and you can "undo" a natural logarithm by using exponentials.		Plot log y a	$gainst \log x$ $y = \log k + x \log a$		
3	Remember that exponentials and logarithms are inverses of each othe	r 3	Be careful with signs In an exponential decay model, be careful not to lose the minus sign. Remember that the logarithm		$Plot \log y a$			
	This is important in solving equations Equations involving exponentials can solved by taking logs of both sides, an equations involving logs can be solve powers	be nd	of a number less than 1 is negative, and you can rewrite e.g. $\ln \frac{1}{2}$ as $-\ln 2$		Remember to use inve appropriate to find the Make sure you know th the unknown constant intercept of the graph	e unknown constant ne relationships between s and the gradient and		
Thr	ree main laws:	Spec	ial cases:		$y = kx^n \Longrightarrow \log y$	$v = \log k + n \log x$		
log	$g_a x + \log_a y = \log_a x g_a x - \log_a y = \log_a \left(\frac{2}{3}g_a x - \log_a y = \log_a \left(\frac{2}{3}g_a x - \log_a x + \log_a $	/ lo	$g_{a} a = 1 (a > 0, a \neq 1)$ $g_{a} 1 = 0 (a > 0, a \neq 1)$ $g\left(\frac{1}{x}\right) = \log(x^{-1}) = -\log(x)$		$y = ka^x \Longrightarrow \log y$	ntercept = $\log k$ $y = \log k + x \log a$ a, intercept = $\log k$		