Subject: Maths

Statistics Statistical Measures

Number Indices \& Standard Form

1	Negative powers (Indices)	
2	Fractiona powers (Indices) $64^{\frac{2}{3}}$	$\begin{gathered} =\left((64)^{\frac{1}{3}}\right)^{2} \\ =(\sqrt[3]{64})^{2} \\ =4^{2} \\ 16 \end{gathered}$
3	Estimate powers \& roots Estimate: $\sqrt{28}$	$\begin{gathered} 25<28<36 \\ \downarrow \\ \sqrt{25}<\sqrt{28}<\sqrt{36} \\ \quad \downarrow \\ 5<\sqrt{28}<6 \end{gathered}$

Number Indices \& Standard Form

| 4
 Ordinary
 form to
 standard form | $\mathbf{5 8 0 0 0 0 0}$ |
| :--- | :--- | :--- |
| $=\mathbf{5 . 8} \times \mathbf{1 0}^{6}$ | |

Product rule for counting
Eg. Katie has 52 different playing cards. She gives one card to Grace, one to Bill and one to Jenny. In how many ways can she do this?
$52 \times 51 \times 50=132600$

Subject: Maths
Term: HTI June Part 2
Year Group: I I Higher
enjoy
learned

Geometry \& Measure - Trigonometry I		
I	Find the missing angle	
2	Find the missing side	$\begin{aligned} \sin \theta & =\frac{0}{H} \\ \sin 33 & =\frac{x}{25} \\ 25 \sin 33 & =x \end{aligned}$ $x=13,62 \mathrm{~cm}$
3	Trig with bearings	thin sails from a port P. It travels 55 km west then 30 km south to an atoll A. Find the bearigg of A from P.

Geometry \& Measure - Area \& Angles			
1	Corresponding angles are equal		
2			

5 \begin{tabular}{l}
Areas(\& perimeter): \\
Triangle \\
\hline 6 \\

Exterior / Interior
angles of polygons:
Sum of the interior
angles $=180(\mathrm{n}-2)$
Exterior angle of a
regular polygon $=$
$360 / n u m b e r ~ o f ~ s i d e s ~$

\hline
\end{tabular}

4	Exact trig values		0°	30°	45°	60°	90°
	\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	
	\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	
	\tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	-	

Key Vocabulary		
I	Mean, median, mode	Forms of averages - finding a middle value in a set of data
2	Trigonometry I	Finding missing angles/sides inside right angled triangles

\section*{| Subject: Maths | Term: HT2 September Part I | Year Group: I I Higher |
| :--- | :--- | :--- |}

Algebra Iteration / Linear Graphs		
1	Growth/decay \& compound interest	Emily invests $£ 8000$ in the bank for 4 yyears. It earns compound interest of 3% per year. $x 1.03$ Calculate the total amount of money that Emily has in the bank after 4 years.
2	Approx. solution using iteration: using the previous answer to find the next answer.	Starting with $x_{0}=0$, use the iteration formula $x_{n+1}=\frac{1}{3}-\frac{x_{3}^{2}}{3}$ three times to find x_{1}, x_{2} and x_{3} $\begin{aligned} & x_{1}: \frac{1}{3}-\frac{0^{2}}{3}= \\ & x 1=0 \\ & \times 2=1 / 3 \\ & \times 3=8 / 27 \end{aligned}$
3	Linear graphs	Equation: $Y=3 x+5$ Table:

4	Solve where 2 lines intersect Solution (3, I)	
5	Gradient of a straight line	
6	Midpoint of a straight line	$\text { Midpoint }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
7	Linear equation from 2 points	

8	Equation of parallel line through a given point	Eg. A straight line has the equation $y=-2 x-3$. Find the equation of the parallel line passing through the point $(1,3)$ $\begin{aligned} & y-y=m(x-x) \\ & y-3=-2(x-1) \\ & y-3=-2 x+2 \\ & +3+3 \\ & y=-2 x+5 \end{aligned}$
9	Use $y=m x+$ c to identify perpendicular lines	$m_{1} \times m_{2}=-1$

Curved surface area only

$$
=\pi r l
$$

REMEMBER: sometimes you may need to calculate the slant of the cone (I) using Pythagoras.

3	Volume Pyramid	$\frac{1}{3} x$ (base area) x height

Subject: Maths
Term: HT2 September Part 2 Year Group: I I Higher

enioy

 lucceed| Ratio \& Proportion | | |
| :---: | :---: | :---: |
| I | Set up \& solve growth/ decay problems | W is directly proportional to F and when $W=24, F=6$. Find the value of W when $F=10$. |
| 2 | Direct and Indirect Proportion graphs | Direct Proportion
 $y \propto x$
 $y=k x$ for a constant k
 Inverse Proporion
 $y \propto \frac{1}{x}$
 $y=\frac{k}{x}$ for a constant k |
| 3 | Fraction ratio | In a class there are 5 boys and 8 girls. Express this as a ratio and fraction. |

Subject: Maths

Number Fractions Decimals

I	+ - $x \div$	$=\frac{9 \times 1}{7 \times 5}=\frac{9}{35} \quad 1 \frac{2}{7} \div 5=\frac{9}{7} \div \frac{5}{1}=\frac{9}{7} \times \frac{1}{5}$	
2	Recurring decimal to fraction	$\left.\begin{array}{rl} x & =0.5454545454 \ldots \\ 100 x & =54.5454545454 \ldots \\ 99 x & =54 \end{array}\right\} \begin{aligned} 99 x & =54 \\ x & =\frac{54}{99}=\frac{6}{11} \end{aligned}$	
4	Reciprocal	$\begin{aligned} & 0.5=\frac{1}{2} \\ & \binom{1}{2} \frac{2}{1}=2 \end{aligned}$	
5	Upper lower bounds	\square $h=6.4 \mathrm{~cm}$ (nearest mm) $\mathrm{w}=11.7 \mathrm{~cm}$ (nearest mm) What are the upper and lower bounds of the area of the rectangle? $11.65 \leq w<11.75 \quad 6.35 \leq h<6.45$ Lb area $=\\| \mid .65 \times 6.35 \mathrm{Ub}$ area $=\mid I .75 \times 6.45$	

Subject: Maths
Term: HT3 November - Part 2
Year Group: II Higher
enioy
succined

Algebra Inequalities \& Equations	
I. Solve inequalities $\begin{array}{r} -3 \leq 2 x-1 \leq 5 \\ +1+1 \\ +-2 \leq 2 x \leq 6 \\ \hline-\frac{2}{2} \leq \frac{2 x}{2} \leq \frac{6}{2} \\ -1 \leq x \leq 3 \end{array}$	2. Find all the integer solutions which satisfy this inequality: $\begin{aligned} &-1 \leqslant x \leqslant 3 \\ &-1.0,1,2,3 \end{aligned}$
3. Solve with unknown both sides $$	4. Quadratic inequalities \& graph Solve $x^{2}-2 x-3<0$ $\begin{array}{ll}-3 & 1 \\ -1 & 3\end{array}$ $\begin{aligned} & (x-3)(x+1)<0 \\ & x=3 \quad x=-1 \end{aligned}$ $-1<x<3$
5. Solve fractional equations $\begin{gathered} \text { Solve } \frac{5}{x-2}=\frac{3}{x} \\ \frac{5}{x-2}=\frac{3}{x} \end{gathered}$	6. Inverse functions HINT :Change the subject of the formula $\begin{aligned} & x=(y-6)^{2}-4 \\ & +4 \\ & +4 \\ & \sqrt{x+4}=\sqrt{(y-6)^{2}} \\ & \sqrt{x+4}=y-6 \\ & +6+6 \\ & \sqrt{x+4}+6=y \\ & f^{-1}(x)=\sqrt{x+4}+6 \end{aligned}$
$\begin{gathered} 5 x=(x-2)(3) \\ 5 x=3 x-6 \\ 2 x=-6 \\ x=-3 \end{gathered}$	7. Composite Functions $\begin{aligned} f g(x) & =2(x-2)+3 \\ & =2 x-4+3 \\ & =\frac{2 x-1}{} \\ g f(x) & =(2 x+3)-2 \\ & =2 x+3-2 \\ & =2 x+1 \end{aligned}$

Subject: Ma		
Geometry Construction		
I	Perpendicular	1) Open the compass more than half of the distance between A and B, and scribe arcs of the same radius centered at A and B. 2) Call the two points where these two arcs meet C and D. Draw the line between C and D. 3) $C D$ is the perpendicular bisector of the line segment $A B$.
2	Angle Bisection	1) Place compass point on the vertex of the angle (point B). 2) Stretch the compass to any length that will stay ON the angle. 3) Swing an arc so the pencil crosses both sides (rays) of the given angle. ... 4) Place the compass point on one of these new intersection points on the sides of the angle.
3	Prove congruent Triangles	Know and understand the different tests for congruency. (RHS)

Key Vocabulary		I
I	Velocity	Is speed with direction.
2	Tangent	A straight line that touches a circle.
3	Roots or solutions	When we draw a quadratic equation, where the curve cuts through the x-axis are called the roots or solutions.
4	Gradient	Rate of change, so it could be the rate of water flow over time, or distance travelled over time.
5	Bisect	To mathematically accurately cut something in half e.g., an angle,
6	Prime factorisation	To break a number down into the primes we can multiply to make the original number.
7	Co-efficient	This is the number in front for example the co-efficient of this term $3 x^{2}$ is 3.

Subject: Maths

Term: HT5 March - Part I \quad Year Group: II Higher

Key Vocabulary		
I	Vectors	A quantity having direction as well as magnitude, in other words, size with direction!
2	Sine Rule For non-right angled triangles	Use with non right angle triangles. Use when the question involves $\mathbf{2}$ sides and $\mathbf{2}$ angles. For missing side: $\frac{a}{\sin A}=\frac{b}{\sin B}$ For missing angle: $\frac{\sin A}{a}=\frac{\sin B}{b}$
3	Cosine Rule For non-right angled triangles	Use with non right angle triangles. Use when the question involves $\mathbf{3}$ sides and 1 angle. For missing side: $\boldsymbol{a}^{2}=b^{2}+c^{2}-2 b c \cos A$ For missing angle: $\boldsymbol{\operatorname { c o s }} \boldsymbol{A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
4	Exponential	Rapid change: exponential growth has growth with a power resulting in greater growth year on year, exponential decay is decay with a power resulting in greater decay year on year.
5	Asymptote	A curve/line never reaches zero (for $\mathrm{y}=\frac{1}{x}$) instead it tends towards infinity.

Year Group: II Higher

Geometry -Trigonometry 2

1	Sine Rule - Missing Side	$\frac{x}{\sin 85}=\frac{5.2}{\sin 46}$ 2

Well done for getting this far \& good luck with your GCSE!

