

tatistics Statistical Measur	res		lumber Indices &	Standard Form	Number Indices &	Standard Form
Mean for grouped data AKA 'estimated mean'.	Because data is grouped we find a midpoint which we then treat as our data. $\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1	Negative powers (Indices)	$x^{2} = \frac{1}{x^{2}}$ $x^{3} = \frac{1}{x^{3}}$	4 Ordinary form to standard form	5800000 = 5.8 × 10 ⁶
Median for grouped data $\frac{\text{Height (x cm)} \text{Frequency}}{0 < x \le 10 3}$ $10 < x \le 20 7$ $20 < x \le 30 12$ $30 < x \le 40 31$ $40 < x \le 50 27$	$\frac{40 < L \le 50}{Calculate an estimate of the mean length of the fish.}$ $\frac{3590 \div 100}{2590}$ $\frac{35.9}{2590}$ Trequency total ÷ 2 then count down the frequency total until we get to the number. $\frac{10}{20 + \frac{11}{31} \times 10}$ $\frac{35.806}{30 + \frac{11}{31} \times 10}$	2	Fractional powers (Indices) $64^{\frac{2}{3}}$ Estimate powers & roots	$= \left((64)^{\frac{1}{3}} \right)^{2}$ $= \left(\sqrt[3]{64} \right)^{2}$ $= 4^{2}$ 16 $25 < 28 < 36$ \downarrow	= (4.6 x 3	$(3 \times 10^5) \div (2 \times 10^3)$ $1 \cdot 5 \times 10^{2}$ $3 \times (3.2 \times 10^3)$ $2) \times (10^8 \times 10^3)$ 72×10^{11} 72×10^{12}
IQR : UQ – LQ (Interquartile range = upper quartile – lower quartie)	Upper Quartile (UQ) = 75% Lower Quartile (LQ) = 25% Eg. Find the IQR of 1, 2, 3, 4, 5, 6, 7 IQR = 6 - 2 = 4		Estimate: J28	J25 < J28 < J36 + 5 < J28 < 6 /	6 Product rule for Eg. Katie has 52 She gives one ca	r counting different playing cards. ard to Grace, one to Bill y. In how many ways can

ຼີຢັ້ນີ້... Beckfoot

Subject: Maths

enjoy learn succeed

	Decki	
Ν	umber Surds / Perce	entages
Ι	Rationalise: x top & bottom by the surd	$\frac{3}{\sqrt{5}} = \frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \qquad (\sqrt{5} \times \sqrt{5} = \sqrt{25} = 5)$ $= \frac{3\sqrt{5}}{5}$
2	Expand brackets	2(5+53) 10+253
3	Geometric sequences with surds $\sqrt{2}$, 2, $2\sqrt{2}$, 4, $\frac{2}{3}$	$n = 1 \longrightarrow (J\overline{2})' = J\overline{2} /$ $n = 2 \longrightarrow (J\overline{2})'' = J\overline{2} \times J\overline{2} = 2 /$ $n = 3 \longrightarrow (J\overline{2})'' = J\overline{2} \times J\overline{2} \times J\overline{2} = 2J\overline{2} /$ $n = 4 \longrightarrow (J\overline{2})'' = J\overline{2} \times J\overline{2} \times J\overline{2} \times J\overline{2} = 4 /$ $n = 5 \longrightarrow (J\overline{2})'' = J\overline{2} \times J\overline{2} \times J\overline{2} \times J\overline{2} \times J\overline{2} = 4 /$
4	% increase / decrease	$Percent Increase = \frac{[new value] - [old value]}{[old value]}$ $Percent Decrease = \frac{[new value] - [old value]}{[old value]}$
5	Multiplier in successive percentages	Successive Percentage Changes An amount is increased by 20% then increased again by 30% Find the overall percentage change. \rightarrow \times 1.2 \rightarrow \times 1.3 \rightarrow \rightarrow \times 1.56 \rightarrow Equivalent to a 56% increase overall.

	FOD	Subject:	Mat	ths ⁻	Term: HT3 November	⁻ – Part 2	Year Group: I I Hig	gher enjoy
2 Relative Frequency 3 Independer events	Beckfoot Colour Blue Yellow Red Green e calculate an est robability × num 20 spins, we would llow $\rightarrow \frac{1}{4} \times 20 = 5$ Item Frequency 1 4 2 5 3 5 4 2 5 4 Total 20 Total 20 No C	Probability 1/2 1/4 1/8 1/10	4 5 5	Successive independent events	t What is the probability of 2 heads on 2 successive throws $P(h) \times p(h) = 0.5 \times 0.5$ $= 0.25$ dependent events $\frac{2}{11} \qquad red \qquad \frac{3}{12} \times \frac{2}{11} = \frac{6}{132} = \frac{11}{22}$ $\frac{3}{11} \qquad red \qquad \frac{1}{22} + \frac{12}{132} = \frac{13}{22}$ $\frac{3}{11} \qquad red \qquad \frac{1}{22} + \frac{12}{132} = \frac{12}{22}$ le And: multiply x Or: add +	Algebra Inec 1. Solve ine 3. Solve with 4m - 3 < -2m - 2m - 3 < -2m < 2m - 3 < -3	qualities & Equations equalities $-3 \le 2 \times -1 \le 5$ ± 1 $\pm 1 \pm 1$ $-2 \le 2 \times \le 6$ $\pm 2 \ge 2 \times = 2 \times = 2$ $\pm 2 \ge 2 \times = 2 \times = 2 \times = 2$ $\pm 2 \ge 2 \times = 2 \times =$	gher 2. Find all the integer solutions which satisfy this inequality: $-1 \le x \le 3$ $-1 \le x \le 3$ 4. Quadratic inequalities & graph Solve $x^2 - 2x - 3 < 0$ $-1 < x < 3$ 4. Quadratic inequalities & graph Solve $x^2 - 2x - 3 < 0$ $-1 < x < 3$ 5. Inverse functions HINT : Change the subject of the formula $x = (y - 6)^{x} + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + $

	,	لم kfoot	Subject	: Maths		Term: H	Γ4 January – Part I	Yea	r Group: 11 Higher	enjoy learn succeed
A	Algebra Simultaneous Equations, Quadratics Equations & Formulae									
1	Solve simultaneous equations Via elimination	given simulta 5x + y = 4x + 5y 25x + 5y 4x + 5y 4x + 5y	= 37 (m) int = 100 = 37 = 63	z solve the betieve $x = 3to5x + y = 20(3) + y = 2015 + y = 20y = 5$ (-15) x = 3, y = 5	4	Factorise & solve	2 numbers that X to give 12 and + to give 7 $x^{2}+7x+12$ $(x+3)(x+4)$	7	Solve via quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Eg 2x ² +11x+6=0 \Rightarrow a=2 b=11 c=6 $x = \frac{-11 \pm \sqrt{11^2 - 4 \times 2 \times 6}}{2 \times 2} \qquad x = \frac{-11 \pm \sqrt{73}}{4}$ x = -0.614 or -4.886 (3dp) Complete the square Turning point (9, -1) x (-18)x + 80 = 0	10. Tangent to circle equation To find equation we use y=mx+c $x^2 + y^2 = 40$ at (2, 6)? Gradient of Radius = $\frac{6}{2} = 3$ $Gradient of Tangent = -\frac{1}{3}$
2	Solve simultaneous equations Via substitution	A) Substitute y and (1) $3x + 2(x + 3x + (2x + 5x + $	x + 3 solve to find x. 3) = 21 x^2+x-3	1) $y=x^2-x-6$ 2) $y=6-2x$ 6=6-2x -6=6 -12=0 (x+4)=0 0 or x+4=0 or x=-4 0 d find both possible values of y. or y=14 (-4,14)	5	Factorise & solve a difference of 2 squares	$a^{2}-b^{2} = (a+b)(a-b)$ $x^{2}-9 = (x+3)(x-3)$ x = -3 $x = 3$	9	$x^{2} - 18x + 80 = 0$ $(x - 9)^{2} - (-9)^{2} + 80 = 0$ $(x - 9)^{2} - 81 + 80 = 0$ $(x - 9)^{2} - 1 = 0$ $(x - 9)^{2} = 1$ $x - 9 = \pm \sqrt{1}$ $x = -1 + 9$ $x = 8$ $x = +1 + 9$ $x = 10$ Gradient of tangent touching	$M = -\frac{1}{3} \& \text{ sub } (2,6)$ $6 = -\frac{1}{3}(2) + c$ $6 + \frac{2}{3} = c c = 6.67$ $y = \frac{1}{3}x + 6.67$ II. Rearrange where a variable appears more than
3	Solve quadratics via graphing The x-intercepts of a graph are the solutions of the equation. A quadratic equation can have one of three types of solutions:	v o Two Solutions	0 One Solution	y O Xo Real Solution	6 3×	Factorise & solve complex quadratics	$3 \times 10 = 30 \text{Factors of } 30 \text{ that } + \\ \text{or } - \text{ to make } 11 \text{ are: } 5 + 6 = 11 \\ 3 \times + 6 \times + 5 \times + 10 \\ 3 \times (x + 2) + 5 (x + 2) \\ 3 \times (x + 2) + 5 (x + 2) \\ (3 \times + 5) (x + 2) \\ \text{so } x = -5/3 \text{ or } x = -2 \\ \end{cases}$		CUIVE Find the gradient of $y = x^2 - 3x - 2$ at the point $x = -1$ (-1.5,4) Draw a tangent at the point $x = -1$ Select 2 points on your tangent line $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3.5 - 4}{01.5}$ $= \frac{-7.5}{1.5} = -5$	once 2(2p + m) = 3 - 5m 4p + 2m = 3 - 5m 4p + 2m + 5m = 3 2m + 5m = 3 - 4p 7m = 3 - 4p m = <u>3 - 4p</u> 7

Term: HT4 January – Part 2 Year Group: 11 Higher

G	eometry Consti	ruction	Ra	tio Proportion F	Rates of Change Real Life Graphs			
I	Perpendicular	 1) Open the compass more than half of the distance between A and B, and scribe arcs of the same radius centered at A and B. 2) Call the two points where these two arcs meet C and D. Draw the line between C and D. 3) CD is the perpendicular bisector of the line segment AB. 	2	Calculate fastest average speed.	Break the graph down into smaller pieces to see what is happening Gradient $A = \frac{1}{3} \longrightarrow 0.3m/s$ Gradient $B = \frac{5}{3} \longrightarrow 1.7 m/s$ Gradient $C = \frac{3}{5} \longrightarrow 0.6m/s$			
2	Angle Bisection	 1) Place compass point on the vertex of the angle (point B). 2) Stretch the compass to any length that will stay ON the angle. 3) Swing an arc so the pencil crosses both sides (rays) of the given angle 4) Place the compass point on one of these new intersection points on the sides of the angle. Know and understand the different tests for congruency. 		Velocity time graphs	$\frac{1}{100} \frac{1}{100} \frac{1}$			
3	Prove congruent			Density				
Triangles		S (SSS)		Number				
		(SAS) (RHS) (RHS) (RHS) (RHS) (RHS) (RHS)	I. Prime factorisati		Venn Diagram $24 = 2x / 2 \times 2 \times 2 \times 3$ $60 = 2x / 2 \times 2 \times 3 \times 3$ 24 24 2 24 2 3 2 4			
			2000	ther way, the result is: $2 \times 3 \times 5$ or $2^2 \times 3$	2x2x2x3x5=120			

K	Key Vocabulary							
Ι	Velocity	ls speed with direction.						
2	Tangent	A straight line that touches a circle.						
3	Roots or solutions	When we draw a quadratic equation, where the curve cuts through the x-axis are called the roots or solutions.						
4	Gradient	Rate of change, so it could be the rate of water flow over time, or distance travelled over time.						
5	Bisect	To mathematically accurately cut something in half e.g., an angle,						
6	Prime factorisation	To break a number down into the primes we can multiply to make the original number.						
7	Co-efficient	This is the number in front for example the co-efficient of this term $3x^2$ is 3.						

Subject: Maths Term: HT5 March – Part 2 Year Group: 11 Higher

Ge	ometry Vectors		G	Geometry -Trigonometry 2					
1	Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-) Eg. $\binom{2}{3}$ means '2 right, 3 up'	1	Sine Rule – Missing Side	$\frac{x}{\sin 85} = \frac{5.2}{\sin 46}$				
2	Vector $\overrightarrow{AB} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$	A vector is a quantity represented by an arrow with both direction and magnitude. $\overrightarrow{AB} = -\overrightarrow{BA}$		46° x	$x = \frac{5.2 \times \sin 85}{\sin 46} = 3.75cm$				
3	Magnitude	Magnitude is defined as the length of a vector.	2	Sine Rule – Missing Angle	$\frac{\sin\theta}{1.9} = \frac{\sin 85}{2.4}$ $\sin\theta = \frac{1.9 \times \sin 85}{2.4} = 0.789$				
4	Parallel Vectors	Parallel vectors are multiples of each other. Eg. 2 a+b and 4 a +2 b are parallel as they are multiple of each other.	3	Cosine Rule – Missing Side	$x^{2} = 9.6^{2} + 7.8^{2} - (2 \times 9.6 \times 7.8 \times \cos 85)$ $x = 11.8$ 7.8 9.6				
5	Collinear Vectors	Collinear vectors are vectors that are on the same line . To show that two vectors are collinear , show that one vector is a multiple of the other (parallel) AND that both vectors share a point .	4	Cosine Rule – Missing Angle	$\cos \theta = \frac{7.2^2 + 8.1^2 - 6.6^2}{2 \times 7.2 \times 8.1}$				
6	Resultant Vector	The resultant vector is the vector that results from adding two or more vectors together. The resultant can also be shown by lining up the head of one vector with the tail of the other. if $\underline{\mathbf{a}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ and $\underline{\mathbf{b}} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$			$\theta = 50.7^{\circ}$				
		then $\underline{\mathbf{a}} + \underline{\mathbf{b}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$		Well done f	or getting this far & good luck with your GCSE!				