		ୁ ସିଥିଲୁ Beckfoot	Subject: M	aths	Term: Hal	f term l		Year Group: IIF				
N	umber:T	ypes of nun	nber	Alg	ebra: Sequenc	y Vocabulary	/					
I	Multiply and	Remembe	r the	1	Term to term rule	How do you get from one term to the other	I	Integer	Whole negative		that can be positive, o.	
	divide positive and	rules: + +	= +	2	Nth term	Difference x n + zero term	2	Factor		A number that goes into another number with no remainders		
	negative numbers	=+		Ge	ometry:Trigon	ometry	3	Product	Another word for multiply			
		+ -	= -	I	Pythagoras' Theorem	c	4	Geometric	Multiple by the same value to get the next term			
2	LCM – Lowest Common	Lowest number both timetables 3: 3, 6, 9, 12	ables. 2			$a^{2} + b^{2} = c^{2}$	5	Fibonacci	Add the next .	previou	us 2 terms to get the	
3	Multiple HCF –	-	t factor that is in both 2 rs		SOHCAHTOA (cover up the one you need)	\wedge	6	Hypotenuse		-	e of a right-angled te the right angle	
	Highest Common Factor	numbers 18: 1, 2, 3, 6, 9, 24: 1, 2, 3, 4, 6, 8				ο sinθh	7	Term	Each number in a sequence.The I st number is the I st term.			
4	Product of primes	Factor trees					Rat	tio and Proportion: Compound meas		ound measure		
		6 2 3 5 $2^2 \times 3 \times 5$	0			$rac{a}{cos \theta}$ h	Spee Time		Density, Mas Volume D	v	Pressure, Force, Area	

Beckfoot Subject: Maths				Ter	m: Half tern	n 2 Page I	Year	Group: I I F	enjoy lean succeed				
A	Algebra: Working with symbols					umber: Perc	entages	G	Geometry: Area and Perimeter				
I	Collecting like terms	$8x^2 + 5x -$	-		I	One quantity as a % of another	Find 30 as a % of 78. 30/78×100= 38.5%	1	Circumference Perimeter	∏X Diameter			
		$(x^2 \text{ and } x \text{ cannot be collected together})$ when added or subtracted)		2	% increase	Increase 30 by 25% 30 x 1.25= 37.5	2	Parallelogram Area	Base X perpendicular height				
2	Substitution	x=8 and y	the letters with numbers. y=-2 Find $3x+2y$			and decrease	Decrease 40 by 35% 40 x 0.65= 26	3	Trapezium Area	(a+b) x perpendicular height / 2			
3	Expand	Multiple t	he outside of	(+6)		Find a %	Change × 100	4	Triangle Area	Base X perpendicular height / 2			
	single brackets	•	with all of the) = 3x - 9			Compound interest	Original $A = P(1+i)^n$	5	Parts of a circle	circumference			
4	Expand double brackets	(x - 9) (A = final amount including principal P = principal amount i = interest rate per year n = number of years invested			sector	
		$x^{2} + 6x - 9x - 54$ Simplify: $x^{2} - 3x - 54$			Rat	tio and Prop	ortion: Ratio			chord			
5	Factorise	4x + 3	2 = 4(x)	<mark>+ 8)</mark>	I	Relationship between	5 blue sweets 2 red <u>Ratio</u> 5:2	6	Circle Area	$\frac{tangent}{\prod X Radius^2}$			
6	Factorise quadratics		• *	2 numbers		fractions and ratio	Fraction of blue 5/7			II / Ruutus			
		$x^{2}+7x+12$ that X to give 12 and + to		x + 12 that X to give 12 and + to		Direct proportion	$y \propto x$ y = kx for a constant k						
			give 7				y = h x for a constant h	(

Alg	gebra: Linear g	raphs									
I	Draw the graph y=3x+4	0	1								
		У	-2	1	4	7					
	y = mx + c	m = gradient ie. How steep the curve is c = y intercept ie.Where the graph crosses the y axis									
2	Gradient of a line	y A	+c (m Change culate	2 in X	Change X	in Y					
3	Parallel lines	If m is the same.The lines are parallel									

Sta	tistics:Averag	jes	Key	Key Vocabulary							
1	Mode	Most common number in a data set	I	Rhombus	A rhombus looks like a square that has fallen over All sides have equal length.						
2	Median	The middle number when all numbers are in order			Opposite sides are parallel, and opposite angles are equal (it is a Parallelogram).						
3	Mean	Add all the data up and divide by	2	Quadrilateral	The name given to any 4 sided 2D shape.						
		how many there are	3	Interior	Inside Interior angle: angle inside						
4	Range	Highest value –			the shape.						
5	Mean from a	lowest value Create a fX	4	Polygon	Any 2D shape with straight lines						
	frequency table	column and multiply x by the	5	Sum	Another word for add						
		frequency Add the answers	6	Expression	Combination of different terms with no equal sign						
		together then divide by the	7	Quadratic	Contains the term x ²						
		total frequency	8	Proportion	Part of a whole.						

		00											enjoy	
		Beckfoot	Subj	ject: Maths	Te	erm	: Half term	3		Year	Gro	oup: I I F	SUCCEEU	
S	Statistics: F	Probability				lumber: Fra	actions and de	ecimals		Geometry: Transformations				
Γ	Probability scale		hle	0.5 0.75 1 ven certair	ı	IAdd andMake sure the denominators are subtractsubtractthe same before adding / subtracting the numerators					Reflection (in the y-axis)			
2	Mutually exclusive			ot happen at the a head and a ta		2	Multiply and divide fractions	<u>Multiplying:</u> mul together then n denominators t	nultiply the	ors	2	4 <i>y</i>	$\mathbf{P}_{\mathbf{a}} = \mathbf{A} + $	
3	Expected probability	on theory. times you	Eg if yo would	cted numbers b ou flip a coin 10 expect 50 head 0.5 (0.5 x100 =)0 Is as	3		<u>Dividing:</u> Keep the first fraction Flip the second fraction then change the divide sign to multiply			3	Translation	Rotation 90 degree, anti-clockwise about (1,1)	
4	Relative frequency	Probability experimen	genera t. Eg. If get 7 6	rated from an f you roll a dice 50 6s.The experimental			Convert mixed numbers/ improper fractions $\frac{11}{24} = \frac{11}{4}$				4	Use vector notation	Enlargement :	
A	lgebra: Eq	uations				<u> </u>					1		Sf 2 from (0,0)	
Ι	Solve one step equations	5x=60 x=60/5 x=12	3	x on both sides	2+5=3	3x-5	(move the sm	aller x first)			Ke	ey Vocabular Reciprocal	The reciprocal of a	
					7=3x 7/3 = >	7=3x 7/3 = x so x = 7/3						number is: 1 divided by the number		
2	Solve two step equations	4x - 8 =24 4x = 32 x = 32/4 x = 8	4	Inequalities on a number line	the	2 value (> 2	circle means that is not included: x is greater than 2	the value is included: $x \ge 3$ x is greater than or equ		2 →	If :	x is between 1	two values, use two circles:	

	r	50	Subject: Maths		Term: Ha	lf te	erm 4				Year	· Group: 11	F succeed
		eckfoot			Number: Indices					Geo		ry:Area and	
1	Algebra: For Substitute numbers into a	Eg. Subst	itute numbers into ula for the area of a m: $\frac{3 \text{ cm}}{1}$	1	Squared numbers $1^2 = 1 \times 1 = 1$ $2^2 = 2 \times 2 = 4$ $3^2 = 3 \times 3 = 9$				I C		squared	$3cm^{2} to m^{2}$ Cm to m =÷100 Square this conversion 100^{2} $3 \div 100^{2} = 0.0003m^{2}$	
	formula	$\frac{(a+b)h}{2}$	$\frac{(a+b)h}{2} = \frac{(3+7)\times 6}{2}$		Cubed numbers		$1^{3} = 1 \times 1 \times 1 = 1$ $2^{3} = 2 \times 2 \times 2 = 8$ $3^{3} = 3 \times 3 \times 3 = 27$ $a^{m} \times a^{n} = a^{m+n}$ $a^{m} \times a^{n} = a^{m-n}$ $(a^{m})^{n} = a^{mn}$				Convert cubed units		$3m^{3} to cm^{3}$ M to cm = x100 Square this conversion 100^{2} 3×100^{2} = 30'000 cm^{2}
2	Rearranging formula	Make a t formula	= 30 he subject of the b = 5a + 21		2 Index laws					v	ol of p	cube/cuboid prisms	Volume= length x width x height Vol= Cross section area x length
			-21 -21 b - 21 = 5a +5 +5 <u>b - 21</u> = a 5	3	Standard form	Orc 29 350	0 3.50 x 10 ²		pr th		risms	area of (work out a of each	Bide 5 side
						<mark>0.0</mark>	0.09 9 x 10 ⁻²			Number: De			cimals
K	ey Vocabula	ry					Geometry	: Scale			T	Round to	3.248 rounded to 1 d.p.
	Expression	-	symbols and operator ogether with no equal	•		nd ×) Appropriate The hei		The heigh door is	nt c	of a		decimal places (dp)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2	Equation 4x+7=5 terms that's are equal.						measures	approxima	ate	ely 2	2	Round to	3268 rounded to 1 sig. fig.
3	Formula		and 2 or more terms. volume, speed etc.	lt cai	n help work						significant figures (sf)	3268 $3 \begin{array}{c} 268 \rightarrow 3000 \\ \hline 1 \text{ sf} \\ 3000 \end{array}$ Look at the next digit. 2 is less than 5 - stay at 3000	

		ୁଇ Beckfoot	Subject: Maths	Term:	Half term 5		Year Gro	oup:	IIF e	njoy learn ucceed
St	atistic: R	epresenting	data		Geometry: Loci				gebra: Quad	dratics
Ι	Data handling cycle	 2) Collect dat 3) Process the 	problem/ pick hypothesis a e data and represent on a nd discuss the results		P 2 -2 0 A 0 2	P 2	<u>~</u>	I	Use a value table to draw $y = x^2$	
2	Pie Chart	Comedy Action 4 5 20% 25% 4/20 × 360° 5/20 × 360° 72° 90°	Romance Drama SciFi 6 1 4 1 30% 5% 20% 1 0° 6/20 × 360° = 108° 1/20 × 360° = 18° 4/20 × 360° = 72° 1/20 × 360°	TOTAL 20 100% 360°	Locus of points equidistant from a point A will form a circle with center A.	Locus of points that are of from two lines will bisect formed by the two lines.	t the angle	2	y 9 4 Roots=	-1 0 1 2 3 1 0 1 4 9
3	Histogr am	all the bars ar	art but uses continuous da re touching. Frequency is the area of the bar.	ta and				3	-3 and 1 y intercept	y=x ² +2x-3
4	Scatter graphs	O Positive Correlation	O Negative X O No Correlation	<		Locus of points equidistant f		4	= -3	-5 -3 -1 -2 1 Turning Point (Minimum Value of equation with positive gradient) -10
		1 Contration				bisector of the line AB.	rucud		point (-1,-4)	

Key	/Vocabulary	
I	Construct	Draw with a compass and ruler
2	Interpret	Say what the results mean

	E	Jeckfoot	Subject: Maths	Term:	Hal	lf term 5 p	age 2		Year G	roup	b: I I F	enjoy learn succeed	
G	eometry: Py				Geometry: Angles						y Vocabular	у	
I	Finding the hypotenuse	Find c. $a^{2} + b^{2} = c$ $4^{2} + 6^{2} = c$ $c^{2} = 52$			Ι	Sum of Interior angles	(n – 2) × 180° N is the number of sides.			I	Hypotenuse	Side opposite the right angle on a right angle triangle (longest side)	
		$c = 52$ $c = \sqrt{52}$			•				(2	Interior	Inside	
		<i>c</i> = 7.21			2	Sum of Exterior	Sum of exterior shape always ad	erior angles of any ys add to 360		3	Exterior	Outside	
2	Finding the shorter side	Find the Val	ue of a: $c^2 = a^2 + b^2$ $a^2 = c^2 - b^2$			angles	× a		a	4	Scalar	A scalar has only magnitude (size)	
	5140	a 13	$a = \sqrt{c^2 - b^2}$ $a = \sqrt{13^2 - 12^2}$ $a = \sqrt{169 - 144}$				$x + y + z = 360^{\circ}$	$\frac{d}{c}$ $a + b + c + d = 360^{\circ}$		5	Vector	A vector has magnitude and direction	
			$a = \sqrt{25}$		Geo	ometry: vecto	ors						
			<i>a</i> = 5		I Add and subtract vectors			lfo	If $\mathbf{x} = \begin{pmatrix} a \\ b \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} c \\ d \end{pmatrix}$			direction magnitude	
3	Prove it's a right angle	-	as the sides 3cm, 4cm and t angle triangle?	6cm.					$\mathbf{x} + \mathbf{y} = \begin{pmatrix} a \\ b \end{pmatrix}$	$\binom{+c}{+d}$		/4 \	
	triangle		$a^{2} + b^{2} = c^{2}$ $3^{2} + 4^{2} = 6^{2}$						$\mathbf{x} - \mathbf{y} = \begin{pmatrix} a \\ b \end{pmatrix}$	$\begin{pmatrix} -c \\ -d \end{pmatrix}$		(-5)	
		25	25 ≠36 (they are not equal)		2 Multiplication of a vector by a scalar $4 \times \begin{bmatrix} 1 \\ 2 \end{bmatrix} =$					1 x 4 2 x 4			
	It is not a right angle triangle.				3	Represent diagram	a vector on a	See dia	See diagram opposite				