Subject: Maths
Term: Half term I
Year Group: IIF
enjoy
succeed

Algebra: Sequences		
1	Term to term rule	How do you get from one term to the other
2	Nth term	Difference $\times n+$ zero term

Number:Types of number		
1	Multiply and divide positive and negative numbers	Remember the rules: $\begin{aligned} & ++=+ \\ & -\quad=+ \\ & -\quad+=- \\ & +-=- \end{aligned}$
2	LCM - Lowest Common Multiple	Lowest number that is in both timetables. $3: 3,6,9,12$ $4: 4,8,12,16$
3	HCF - Highest Common Factor	Highest factor that is in both numbers I8: I, 2, 3, 6, 9, 18 24: I, 2, 3, 4, 6, 8, I2, 24
4	Product of primes	Factor trees

| Geometry:Trigonometry | | |
| :--- | :--- | :--- | :--- |
| I | Pythagoras'
 Theorem | |
| 2 | SOHCAHTOA
 (cover up the one
 you need) | |

Key Vocabulary		
I	Integer	Whole number that can be positive, negative or zero.
2	Factor	A number that goes into another number with no remainders
3	Product	Another word for multiply
4	Geometric	Multiple by the same value to get the next term
5	Fibonacci	Add the previous 2 terms to get the next .
6	Hypotenuse	The longest side of a right-angled triangle, opposite the right angle
7	Term	Each number in a sequence.The I $^{\text {st }}$ number is the I ${ }^{\text {st }}$ term.

Ratio and Proportion: Compound measure

Beckfoot
Subject: Maths
Term: Half term 2 Page I
Year Group: IIF
orpe
succeed

Algebra:Working with symbols		
1	Collecting like terms	$\begin{aligned} & \text { e.g. } 3 \mathrm{x}+7+8 x^{2}+2 x-10= \\ & 8 x^{2}+5 \mathrm{x}-3 \end{aligned}$ (x^{2} and x cannot be collected together when added or subtracted)
2	Substitution	Replace the letters with numbers. $x=8$ and $y=-2$ Find $3 x+2 y$ $(3 \times 8)+(2 x-2)=24-4=20$
3	Expand single brackets	Multiple the outside of the brackets with all of the inside. $3(x-3)=3 x-9$
4	Expand double brackets	$\begin{aligned} & (x-9)(x+6) \\ & x^{2}+6 x-9 x-54 \\ & \text { Simplify: } x^{2}-3 x-54 \end{aligned}$
5	Factorise	$4 x+32=4(x+8)$
6	Factorise quadratics	2 numbers that X to give 12 and + to give 7

Number: Percentages		
I	One quantity as a \% of another	Find 30 as a \% of 78. $30 / 78 \times 100=38.5 \%$
2	\% increase and decrease	Increase 30 by 25% $30 \times 1.25=37.5$ Decrease 40 by 35% $40 \times 0.65=26$
3	Find a \%	$\frac{\text { Change }}{\text { Original }} \times 100$
4	Compound interest	$A=P(1+i)^{n}$ $A=$ final amount including principal $P=$ principal amount $i=$ interest rate per year $n=$ number of years invested

Ratio and Proportion: Ratio

I	Relationship between fractions and ratio	5 blue sweets 2 red Ratio 5:2 Fraction of blue 5/7
2	Direct proportion	$y \propto x$ $y=k x$ for a constant k

Geometry: Area and Perimeter

I	Circumference Perimeter	$\Pi \times$ Diameter
2	Parallelogram Area	Base \times perpendicular height
3	Trapezium Area	$(\mathrm{a}+\mathrm{b}) \times$ perpendicular height $/ 2$
4	Triangle Area	Base \times perpendicular height $/ 2$
5	Parts of a circle	
6	Circle Area	Circumerence

Algebra: Linear graphs						
1	Draw the graph $y=3 x+4$	X	-2	-1	0	1
		y	-2	1	4	7
	$y=m x+c$	$\mathrm{m}=$ gradient ie. How steep the curve is $\mathrm{c}=\mathrm{y}$ intercept ie. Where the graph crosses the y axis				
2	Gradient of a line	$y=m x+c$ (m is the gradient) To calculate the gradient: $m=y / x$				
3	Parallel lines	If m is the same. The lines are parallel				

Statistics:Averages		
I	Mode	Most common number in a data set
2	Median	The middle number when all numbers are in order
3	Mean	Add all the data up and divide by how many there are
4	Range	Highest value - lowest value
5	Mean from a frequency table	Create a X column and multiply \times by the frequency Add the answers together then divide by the total frequency

Key Vocabulary		
I	Rhombus	A rhombus looks like a square that has fallen over.. All sides have equal lengt. Opposite sides are parallel, and opposite angles are equal (it is a Parallelogram).
2	Quadrilateral	The name given to any 4 sided 2D shape.
3	Interior	Inside Interior angle: angle inside the shape.
4	Polygon	Any 2D shape with straight lines
5	Sum	Another word for add
6	Expression	Combination of different terms with no equal sign
7	Quadratic	Contains the term x^{2}
8	Proportion	Part of a whole.

Number: Fractions and decimals		
I	Add and subtract fractions	Make sure the denominators are the same before adding / subtracting the numerators
2	Multiply and divide fractions	Multiplying: multiply numerators together then multiply the denominators together Dividing:Keep the first fraction
3	Convert mixed numbers/ improper second fraction then imange the divide sign to multiply. fractions	x

Algebra: Equations

Geometry:Transformations

Key Vocabulary

I	Reciprocal	The reciprocal of a number is: 1 divided by the number

If x is between two values, use two circles:

Beckfoot
Subject: Maths

Number: Indices			
I	Squared numbers	$12=1$ $2^{2}=2$ $3^{2}=3$	$1=1$ $\times 2=4$ $\times 3=9$
2	Cubed numbers	$\begin{aligned} & 1^{3}=1 \times 1 \times 1=1 \\ & 2^{3}=2 \times 2 \times 2=8 \\ & 3^{3}=3 \times 3 \times 3=27 \end{aligned}$	
2	Index laws	$\begin{aligned} a^{m} \times a^{n} & =a^{m+n} \\ a^{m} \div a^{n} & =a^{m-n} \\ \left(a^{m}\right)^{n} & =a^{m n} \end{aligned}$	
3	Standard form	Ordinary Number	Standard Form
		29	2.9×10^{1}
		350	3.50×10^{2}
		0.3	3×10^{-1}
		0.09	9×10^{-2}

Geometry:Area and volume

I	Covert squared units	$3 \mathrm{~cm}^{2}$ to m^{2} Cm to $\mathrm{m}=\div 100$ Square this conversion 100^{2} $3 \div 100^{2}=0.0003 \mathrm{~m}^{2}$
2	Convert cubed units	$3 \mathrm{~m}^{3}$ to cm^{3} M to $\mathrm{cm}=\times 100$ Square this conversion 100^{2} $3 \times 100^{2}=30,000 \mathrm{~cm}^{2}$
3	Vol of cube/cuboid Vol of prisms	Volume $=$ length \times width \times height Vol $=$ Cross section area \times length
4	Surface area of prisms (work out the area of each side)	

Number: Decimals

Key Vocabulary		
I	Expression	Numbers, symbols and operators (such as + and \times) grouped together with no equals sign
2	Equation	$4 x+7=5$ terms that's are equal.
3	Formula	Has an $=$ and 2 or more terms. It can help work out area, volume, speed etc.

Geometry: Scale

Appropriate measures	The height of a door is approximately 2 metres

1	Round to decimal places (dp)	
2	Round to significant figures (sf)	

Subject: Maths

Statistic: Representing data

1	Data handling cycle	I) Specify the problem/ pick hypothesis 2) Collect data 3) Process the data and represent on a graph 4) Interpret and discuss the results					
2	Pie Chart	Comedy	Action	Romance	Drama	Scifi	TOTAL
		4	5	6	1	4	20
		20\%	25\%	30\%	5\%	20\%	100\%
		$\begin{gathered} 4 / 20 \times 360^{\circ} \\ =72^{\circ} \end{gathered}$	$\begin{gathered} 5 / 20 \times 360^{\circ} \\ =9 \mathbf{9 0}^{\circ} \end{gathered}$	$\begin{gathered} 6 / 20 \times 360^{\circ} \\ =\mathbf{1 0 8}^{\circ} \end{gathered}$	$\begin{gathered} 1 / 20 \times 360^{\circ} \\ =18^{\circ} \end{gathered}$	$\begin{gathered} 4 / 20 \times 360^{\circ} \\ =72^{\circ} \end{gathered}$	360°

| 3 | Histogr
 am |
| :--- | :--- | | Like a bar chart but uses continuous data and |
| :--- |
| all the bars are touching. Frequency is |
| measured by the area of the bar. |

4	Scatter graphs	

Geometry: Loci

Locus of points equidistant from a point A will form a circle with center A.	Locus of points that are equidistant from two lines will bisect the angle formed by the two lines.
Locus of points equidistant from a line segment.	Locus of points equidistant from two points A and B forms a perpendicular bisector of the line $A B$.

Algebra: Quadratics

Algebra: Graphs

Speed distance time graph	$10 \mathrm{~m}-20 \mathrm{~m}$ They have Stopped moving	

Key Vocabulary		
1	Construct	Draw with a compass and ruler
2	Interpret	Say what the results mean

Geometry: Pythagoras

I	Finding the hypotenuse	Find c. $\begin{aligned} & a^{2}+b^{2}=c^{2} \\ & 4^{2}+6^{2}=c^{2} \\ & c^{2}=52 \\ & c=\sqrt{52} \\ & c=7.21 \end{aligned}$
2	Finding the shorter side	$\begin{aligned} & \text { Find the Value of a: } \quad \begin{aligned} \mathrm{c}^{2} & =\mathrm{a}^{2}+\mathrm{b}^{2} \\ a^{2} & =c^{2}-b^{2} \\ a & =\sqrt{c^{2}-b^{2}} \\ a & =\sqrt{13^{2}-12^{2}} \\ a & =\sqrt{169-144} \\ a & =\sqrt{25} \\ a & =5 \end{aligned} \\ & \\ & \\ & \hline 13 \end{aligned}$
3	Prove it's a right angle triangle	A triangle has the sides $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 6 cm . Is this a right angle triangle? $\begin{gathered} a^{2}+b^{2}=c^{2} \\ 3^{2}+4^{2}=6^{2} \\ 9+16=36 \\ 25 \neq 36 \text { (they are not equal) } \end{gathered}$ It is not a right angle triangle.

