Beckfoot Subject: Maths			Terr	m: I	Half Term I - Ju	ine		Ye	ear Grou	p: 10H	enjoy learn succeed		
١	Number –	Fractions and Decima	ls	Ge	eometry and Me	asure – Angles		Key Vocabulary					
I	Recurring Decimal	A decimal number that has digits that repeat forever.The part that repeats is			d Area Corresponding Angles	Corresponding angles are equal . They look like F	-	1 2	Integer Fraction	A whole nur positive, neg A number th of a whole. I	nber that can be ative or zero. at represents a part t consists of a		
		usually shown by placing a dot above the digit that repeats, or dots over the first and last digit of the repeating pattern. Eg. $\frac{1}{3} = 0.333 \dots = 0.3$		usually shown by placing a dot above the digit that repeats, or dots over the first and last digit of the repeating				angles, but never say this in the exam.				numerator a The numera number of e whole, while the total nur	nd a denominator. tor represents the qual parts of a the denominator is mber of parts that
				2	Alternate Angles	equal. They look like Z angles, but never say this in the exam.	-	3	Reciprocal	To get the re number, we number. Eg.	d whole. cciprocal of a divide 1 by the the reciprocal of 2		
1	Algebra – Bracket Expansion	To expand a bracket, multiple each term in the bracket by	ly	3	Co-Interior Angles	Co - Interior angles add up to 180°.		4	Expression	is ½ Numbers, sy operators (s grouped tog	mbols and uch as + and ×) ether that show the		
		the expression outside the bracket. 3(m + 7) = 3r + 21	e [Area of Triangle Base x Height ÷ 2	9 4 5				value of som equals sign.	ething with no		
2	Factorise	The reverse of expanding.		5	Area of Trapezium	$\underline{\begin{array}{c}12\\A=24cm^2\end{array}}$ Top add the Bottom x		5	Perimeter	Distance arc shape.	ound the outside of a		
		expression as a product of		0	(a+b)	half the height		6	Compound Area	An area mac one shape.	e up of more than		
		common factor.			$\frac{1}{2} \times h$	$4 = 55 cm^2$		7	Area of a	$A = \pi r^2$ w	nich means 'pi x		
		6x - 15 = 3(2x - 5), whe 3 is the common factor.	re	6	Area of a parallelogram	4cm 3cm			Circle	radius squa	red'. ich means 'ni x		
3	Differenc e of 2 Squares	An expression of the form $a^2 - b^2$ can be factorised to give $(a + b)(a - b)$)		Base x Perpendicular Height	Tom $A = 21 cm^2$		ð	rence of a Circle	diameter'			

Subject: Maths

Term: Half Term 2 – September Part I Year Group: 10H

Geometry & Measure - Pythagoras					umber - Per	centages		Key Vocabulary			
	Finding the	Find c		1	Percentage multipliers	The multiplier for increasing by 12% is 1.12	I	Hypotenuse	The longest side on a right angled triangle		
	hypotenuse	$a^2 + b^2 = c^2$	4			The multiplier for decreasing by 12% is 0.88 (100% - 12%)	2	Unit Ratio	Used to compare ratios, one of the		
		$4^2 + 6^2 = c^2$ $c^2 = 52$	6	3	Percentage change	(new value – original value) original value × 100%			permissible to have a decimal in a ratio.		
		$c = \sqrt{52}$ $c = 7.21$		2	Reverse Percentage	A jumper was priced at £48.60 after a 10% reduction. Find its original price. 100% - 10% = 90%	3	Unitary method	Find the value of 1 item, before multiplying to find the value of more. Used to work out which products give the better value for		
2	Finding the	Find the Value of a:	$c^2 = a^2 + b^2$			90% = £48.60 1% = £0.54			money		
	side		$a^2 = c^2 - b^2$	3	Compound	100% = £54 A bank pays 5% compound interest a	4	Simple Interest	Interest calculated as a percentage of the original amount.		
		a 13 a 12	$a = \sqrt{c^2 - b^2}$ $a = \sqrt{13^2 - 12^2}$ $a = \sqrt{169 - 144}$		Interest	year. Bob invests £3000. How much will he have after 7 years? $3000 \times 1.05^7 = £4221.30$	5	Compound Interest	Interest paid on the original amount and the accumulated interest.		
			$a = \sqrt{25}$ $a = 5$	4	Exponential Graph	The equation is of the form $y = a^x$, where a is a number called the base . If $a > 1$ the graph increases .	6	Exponential growth	When we multiply a number repeatedly by the same number $(\neq 1)$, resulting in the number increasing by the same		
3	Find the distance		у · (× _л .у _л)			If $0 < a < 1$, the graph decreases . The graph has an asymptote which is			proportion each time. e.g. 1, 2, 4, 8, 16, 32, 64, 128		
	points	$\sqrt{(x_{\rm A} - x_{\rm B})^2 + (y_{\rm A} - y_{\rm B})^2}$	$\frac{(x_{B},y_{B})}{x_{A}-x_{B}} + (y_{A}-y_{B})^{2}$ The graph has a the x-axis . $x_{A}-x_{B})^{2} + (y_{A}-y_{B})^{2}$	the x-axis.	7	Exponential decay	When we multiply a numberrepeatedly by the same number $(0 < x < 1)$, resulting in thenumber decreasing by the sameproportion each time.eg. 1000, 200, 40, 8				

Term: Half Term 2 – September Part 2 Year Group: 10H

G	eometry & Measure – Area & Volume	Geometry & Measure – Trigonometry I	Algebra – Equations & Formulae			
I	Area units 1 cm ² = 100 mm ² 1m ² = 10000 cm ²	I Sine $\sin \theta = \frac{0}{H}$ $\theta = \sin^{-1} \frac{0}{H}$ $\delta = \sin^{-1} \frac{0}{S \times H}$	I Expression A mathematical statement written using symbols, numbers or letters, $3x + 2$ or $5y^2$			
	1 cm 10 mm 10 mm 10 mm	Cosine $\cos \theta = \frac{A}{H}$ $\theta = \cos^{-1} \frac{A}{H}$	2 Equation A statement showing that two expressions are equal 2y - 17 = 15			
	Area = 1 cm \times 1 cm = 1 cm ² Area = 10 mm \times 10 mm = 100 mm ²	Tangent $\tan \theta = \frac{0}{A}$ $\theta = \tan^{-1} \frac{0}{A}$ $\overbrace{T \times A}^{O}$	An equation that is true for all values of the variables An identity uses the symbol: \equiv $2x \equiv x+x$			
2	Volume units $1 \text{ cm}^3 = 1000000 \text{ cm}^3$	2 Exact Values for Angles in Trigonometry	4 Formula Shows the relationship between two or more variables Area of a rectangle = length x width or A = LxW			
	Volume = 1 cm^3 1 cm^3 10 mm^3 10 mm^3 10	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 Solving inequalities Inequalities are solved using the same steps as equations. If you multiply or divide an inequality by a negative number, then the inequality sign is			
3	Volume of a Prism = Area of	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	reversed. Eg5x > 10 x < -2			
	cross section x length		Ratio, Proportion and rates of change			
4	Volume of a Cylinder	1	– Katio			
	$V = \pi r^2 h$ $V = \pi (4)(5)$ $= 62.8 cm^3$	Key Vocabulary	IDivide ineg Divide £350 in the ratio 3:4a givenbetween Amy and Bob.ratio3+4 = 7 (There are 7 parts.)			
5	Surface Area of Cylinder $2\pi r^2 + 2\pi rh$	I Prism A 3D shape that has a constant cross- section through its length, eg cylinder, triangular prism	$350 \div 7 = 50 \text{ (Each part is worth}$ $50)$ $3 \times 50 = \pounds 150 \text{ for Amy}$ $4 \times 50 = \pounds 200 \text{ for Bob}$			

G	eo	metry & Me	asure –	Polygons		R	atio, Propor roportion	rtion and rates of	change –	
-	1	Square		4 equal sides 4 right angles 2 pairs of parallel sides Diagonals cross at right angles	4 lines of symmetry Rotational symmetry order 4		Direct proportion	"y is proportio	pnal to x" $y \propto x$ y = kx	
	2	Rectangle		2 pairs of equal sides 4 right angles 2 pairs of parallel sides	2 lines of symmetry Rotational symmetry order 2	2	Indirect proportion	"y is inversely proportional to x" $y \propto \frac{1}{x}$		
	3	Rhombus 4 equal sides 2 pairs of equal angles 2 pairs of parallel sides Diagonals cross at right angles 2 lines of syl Rotational sides Parallelogram 2 pairs of equal angles 2 pairs of equal angles 2 pairs of equal angles 2 pairs of parallel sides 0 lines of syl Rotational sides		2 lines of symmetry Rotational symmetry order 2			y =	$y = \frac{x}{x}$		
	4			0 lines of symmetry Rotational symmetry order 2	3	Directly Proportional graph	The graph of two quantities in direct proportion will go through the origin and have a positive			
	5	Kite	\bigcirc	2 pairs of equal sides 1 pairs of equal angles 2 pairs of parallel sides Diagonals cross at right angles	1 lines of symmetry Rotational symmetry order 1		8.00	gradient		
	6	Trapezium	apezium 1 pair of parallel sides					al Life Graphs		
	7	Isosceles Trapezium		1 pair of parallel sides 1 pair of equal sides 2 pairs of equal angles	1 lines of symmetry Rotational symmetry order 1		The gradien area under	The gradient, y-intercept and area under the graph might have a contextual meaning. Example – Graph shows cost of hiring a ladder for various number of days.The gradient shows the cost per day The y-intercept		
2		Sum of interior angles	For an n Sum of i	-sided polygon nterior angles = 18	0 × (n – 2)		Example – G			
3		Sum of exterior angles	For all p	olygons: Sum of ex	terior angles = 360		of days.The g			
4		Regular polygonsExterior angle = 360 ÷ number of sides number of sides = 360 ÷ Exterior Angle Interior angle = 180 – Exterior angle			shows the additional cost/deposit/fixed charge.					

f change –	Key Vocabulary								
ional to x" $y \propto x$	Ι	Regular polygon	All sides the same length All angles the same size						
y = kx oportional to x" 1	2	Direct proportion	Two quantities increase at the same rate						
$\frac{x - \frac{1}{x}}{x} = \frac{k}{x}$	3	Indirect proportion	One variable increases at a constant rate as the second variable decreases						
will go through a positive	4	Constant of proportionality	Represented by k. Its value stays the same						
→	5	Rate of change	The gradient of a tangent to the curve can be used to calculate the rate of change at any given point						
40 38 36 34 32 30 28 28	6	Conversion graph	A line graph to convert one unit to another.						
224 222 20									

Subject: Maths

	Deckioot		1 -							
G		Beomet	ry &	Measur	e – Re	flections, Rotations & Translat	ions			
1	The angle at the centre is twice the angle at the circumference		I Rotation - A "turnin image abo			movement a fixed poir	t of an nt	Describe by - a) "Rotation" b) Angle of rotation c) Centre of rotation d) Direction of rotation		
2	Angles at the circumference in the same segment are equal		2	Reflect - A "flip across	tion ipping" movement s a mirror line			Describe by - a) "Reflection" b) The equation of the line of reflection		
3	Angle in a semicircle are 90°	x-90°	3	Transla - A "slie image	tion ding" i	movement	of an	Describe by - a) "Translation" $\begin{pmatrix} x \\ y \end{pmatrix}$ x is the k b) The column vector $\begin{pmatrix} x \\ y \end{pmatrix}$ y is the y	norizontal movement vertical movement	
4	Opposite angles of a cyclic quadrilateral add to 180°						1	Key Vocabulary		
	$A + C = 180^{\circ}$ $B + D = 180^{\circ}$					I Chord A line end		which touches the circumference at each		
5	The angle between a tangent and radius is 90° Two tangents from the same	$x = 90^{\circ}$			2	Arc	A sectio	on from the circumference of a circle		
	point to a circle are equal lengths.	B $TA = TB$			3	Segment	The reg the arc	The region of a circle bounded by a chord and the arc subtended by the chord		
6	Alternate segment	7 Equation of a circle $x^{2} + y^{2} = r^{2}$ $x^{2} + y^{2} = r^{2}$ Circle with centre (0,0) and radius r		$r^{2} = 16 (r = \sqrt{16} = 4)$		Sector	The reg an arc	The region of a circle bounded by two radii and on arc		
				×> X 1	5	Tangent	A line c circum	A line outside a circle which only touches the circumference at one point		

Algebra – Quadratic Equations				bra – Simultaneou	s Equations	Statistics - Scatter Graphs											
I	The quadratic graph is a "U-shaped" curve called a	tic graph is a curve called a f $a < 0$, the upside down. solution to a Root Root x		Solving graphically	The points of intersection are the solution	I	Causality	When one variable influences another variable									
	parabola. If a < 0, the parabola is upside down. A root is a solution to a			6 6 4 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Boot	6 5 4 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6 6 4 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Root Root X	Root Root X	Root Root x	Root Root X	Root Root X	6 5 4 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2	Solving by elimination	Usually used for linear equations – same signs subtract, different signs add.	2
	quadratic equation. A quadratic equation may have no, one, or two	3 -2 -1 1 1 2 3 4 5 6 7 8 -2 -3 -4 -4 -2 Vertex	3	Solving by substitution	Usually used for quadratic equations – Rearrange and	3	Outlier	A value that "lies outside" most of the values in the data set									
2	solutions Solve a quadratic by factorising:	Make sure the equation = 0 $ax^{2} + bx + c = 0$	Geo	metry and Measur	Substitute es - Vectors	4	Positive, Negative or No Correlation	Positive correlationNegative correlationNo correlation									
	Colore and actions	Use the products of ac that sum to b Use this method when an		Vector Notation	in 3 ways:	Key Vocabulary											
3	the quadratic formula:	equation does not easily			a or \overrightarrow{AB} or $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$		Quadratic	A quadratic expression is of the									
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	factorise	2	Parallel vectors are multiples of each other.	2a+b and 4a+2b are parallel as 4a+2b =2(2a+b)			form: $ax^2 + bx + c$									
4	Solving a quadratic by completing the square: (x + p) ² + q = 0	Use this method when you want to find the vertex. It's co-ordinates are (-p, q)	3	Collinear vectors are vectors that are on the	To show this you must show that they are parallel	2	Coefficient	A number used to multiply a variable.									
Ratio	o, Proportion and r	ates of change-		same line.	and that they share a point.	3	Vector	A vector is a quantity with both direction and magnitude.									
Simi	Similarity		4	Resultant vectors	The resultant vector is the vector that results from	4	Magnitude	The length of a vector									
I	Scale Factor	To find the scale factor, divide a length on one			adding two or more vectors together.	6	Similar Shapes	The same shape but different									
		shape by the corresponding length on a	5	Scalar of a vector	A scalar is the number we			sizes									
similar shape		similar shape			multiply the vector by	7	Correlation	The connection between 2 data sets									

Beckfoot Subject: Maths				Term: Half Term 6 May							Year Group: 10H			
Algebra – Cubic, circular and exponential functions				Geometry and Measure – Trigonometry (Non-Right Angled)							bra – Transforming Translations:	Functions		
I	Cubic Graphs – the highest power is of	egative	I	Sine Rul involves angle	e – Use il 2 sides a	f question nd 1	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$				$y = f(x) + a \rightarrow {0 \choose a}$ $y = f(x + a) \rightarrow {-a \choose 0}$	x-coordinate: ha by coordinate: - a y-coordinate: +a y-coordinate: - a y-coordinate:		
2	order 3 Reciprocal Graphs- x is in the denominator	a sitive	2	Cosine Rule – Use if question involves 3 sides and 1 angle			$a^2 = b^2 + c^2 - 2bc \cos A$			2	Kellections: $y = -f(x) \rightarrow in the x-axis$ $y = f(-x) \rightarrow in the y-axis$	x-coordinate: change signs y-coordinate: no change		
3	Exponential Graphs – x		3	Area of	a triangle	9 		$\frac{1}{2}$ ab sinC		3	Stretch y = f(ax) \rightarrow x s.f $\frac{1}{a}$			
	is in the power.	Positi	4		0°	30°	45°	les 60°	90°		$y = af(x) \rightarrow y$ s.f. a	x-coordinate: + c x-coordinate: no change y-coordinate: no change y-coordinate: multiply by a		
4	Equation of a circle – $x^2 + y^2 = r^2$	Tangents are perpendicular to radii		sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	I	Alge	bra – Transforming	Functions		
	,			cos	I	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0		Function notation: f(x)	x is the input and f(x) is the output value		
5	Circular functions – trigonometric graph	y = cos(x) $y = cos(x)$ $y = sin(x)$ $y = sin(x)$ $y = cos(x)$ $z =$		tan	0	$\frac{1}{\sqrt{3}}$	I	$\sqrt{3}$	-	2	f ⁻¹ (x) is the inverse function.	Make the function = y Make x the subject Beplace x with x and x		
Geo	metry and Measur	e – Area and	Key Vocabulary								with $f^{+}(x)$			
Volume 2			Ι	Asympto	te	a straight	line that	continua curve bi	lly ut does	3	Composite Functions are a combination of two or more functions	fg(x) means do g first then f gf(x) means do f first then		
I	Area of a sector	$\frac{\theta}{260}\pi r^2$		not meet it								g g		
2	Length of an arc	$\frac{\theta}{360}\pi d$	2	Perpendi	cular	Two lines meet at a gradient o	s are perp เ right ang of m and	endicular gle.Then I - <u>1</u>	r if they have a					