Subject: Maths
Term: Half Term I - June
Year Group: IOH

Geometry and Measure - Angles and Area

I	Corresponding Angles	Corresponding angles are equal. They look like F angles, but never say this in the exam.
2	Alternate Angles	Alternate angles are equal. They look like Z angles, but never say this in the exam.
3	Co-Interior Angles	Co - Interior angles add up to 180°.
4	Area of Triangle Base \mathbf{x} Height $\div 2$	
5	Area of Trapezium $\frac{(a+b)}{2} \times h$	Top add the Bottom x half the height
6	Area of a parallelogram Base x Perpendicular Height	$A=21 \mathrm{~cm}^{2}$

Key Vocabulary		
I	Integer	A whole number that can be positive, negative or zero.
2	Fraction	A number that represents a part of a whole. It consists of a numerator and a denominator. The numerator represents the number of equal parts of a whole, while the denominator is the total number of parts that make up said whole.
3	Reciprocal	To get the reciprocal of a number, we divide 1 by the number. Eg. the reciprocal of 2 is $1 / 2$
4	Expression	Numbers, symbols and operators (such as + and \times) grouped together that show the value of something with no equals sign.
5	Perimeter	Distance around the outside of a shape.
6	Compound Area	An area made up of more than one shape.

7	Area of a Circle	$\boldsymbol{A}=\boldsymbol{\pi} \boldsymbol{r}^{2}$ which means 'pi x radius squared'.
8	Circumfe rence of a Circle	$\boldsymbol{C}=\boldsymbol{\pi} \boldsymbol{d}$ which means 'pi x diameter'

Subject: Maths
Term: Half Term 2 - September Part I
Year Group: IOH

Geometry \& Measure - Pythagoras

I	Finding the hypotenuse	Find c. $a^{2}+b^{2}=c^{2}$ $4^{2}+6^{2}=c^{2}$ $c^{2}=52$ $c=\sqrt{52}$ $c=7.21$	4
2	Finding the shorter side	Find the Value of a:	$c^{c^{2}=a^{2}+b^{2}}$ $a^{2}=c^{2}-b^{2}$

Number - Percentages

1	Percentage multipliers	The multiplier for increasing by 12% is 1.12 The multiplier for decreasing by 12% is 0.88 (100% - 12%)
3	Percentage change	$\frac{(\text { new value - original value })}{\text { original value }} \times 100 \%$
2	Reverse Percentage	A jumper was priced at $£ 48.60$ after a 10% reduction. Find its original price. $\begin{aligned} & 100 \%-10 \%=90 \% \\ & 90 \%=£ 48.60 \\ & 1 \%=£ 0.54 \\ & 100 \%=£ 54 \\ & \hline \end{aligned}$
3	Compound Interest	A bank pays 5\% compound interest a year. Bob invests $£ 3000$. How much will he have after 7 years? $3000 \times 1.05^{7}=£ 4221.30$
4	Exponential Graph	The equation is of the form $\boldsymbol{y}=\boldsymbol{a}^{\boldsymbol{x}}$, where \boldsymbol{a} is a number called the base. If $\boldsymbol{a}>\mathbf{1}$ the graph increases. If $\mathbf{0}<\boldsymbol{a}<\mathbf{1}$, the graph decreases. The graph has an asymptote which is the \mathbf{x}-axis.

Key Vocabulary		
I	Hypotenuse	The longest side on a right angled triangle
2	Unit Ratio	Used to compare ratios, one of the parts is I. The only time it is permissible to have a decimal in a ratio.
3	Unitary method	Find the value of 1 item, before multiplying to find the value of more. Used to work out which products give the better value for money
4	Simple Interest	Interest calculated as a percentage of the original amount.
5	Compound Interest	Interest paid on the original amount and the accumulated interest.
6	Exponential growth	When we multiply a number repeatedly by the same number ($\neq 1$), resulting in the number increasing by the same proportion each time. e.g. $1,2,4,8,16,32,64,128$...
7	Exponential decay	When we multiply a number repeatedly by the same number ($\mathbf{0}<\boldsymbol{x}<\mathbf{1}$), resulting in the number decreasing by the same proportion each time. eg. $1000,200,40,8 \ldots$.

Geometry \& Measure - Trigonometry I

θ	0°	30°	45°	60°	90°
$\operatorname{Sin} \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\operatorname{Cos} \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{Tan} \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

Key Vocabulary

A 3D shape that has a constant crosssection through its length, eg cylinder, triangular prism

Algebra - Equations \& Formulae		
I	Expression	A mathematical statement written using symbols, numbers or letters, $3 x+2$ or 5y
2	Equation	A statement showing that two expressions are equal $2 y-17=15$
3	Identity	An equation that is true for all values of the variables An identity uses the symbol: \equiv $2 x \equiv x+x$
4	Formula	Shows the relationship between two or more variables Area of a rectangle = length x width or A= LxW
5	Solving inequalities	Inequalities are solved using the same steps as equations. If you multiply or divide an inequality by a negative number, then the inequality sign is reversed. Eg. -5x > I0 x < - 2

Ratio, Proportion and rates of change- Ratio		
1	Divide in a given ratio	eg Divide $£ 350$ in the ratio 3:4 between Amy and Bob. $3+4=7$ (There are 7 parts.) $350 \div 7=50$ (Each part is worth 50) $3 \times 50=£ 150$ for Amy $4 \times 50=£ 200$ for Bob

Subject: Maths
Term: Half Term 3 - November Part I
Year Group: IOH
Rotational symmetry order 1

2	Sum of interior angles	For an n-sided polygon Sum of interior angles $=180 \times(n-2)$
3	Sum of exterior angles	For all polygons: Sum of exterior angles $=360$
4	Regular polygons	Exterior angle $=360 \div$ number of sides number of sides $=360 \div$ Exterior Angle Interior angle $=180-$ Exterior angle

Algebra - Real Life Graphs
 The gradient, y-intercept and
area under the graph might have a contextual meaning.

Example - Graph shows cost of hiring a ladder for various number of days. The gradient shows the cost per day. The y-intercept shows the additional cost/deposit/fixed charge.

Key Vocabulary		
I	Regular polygon	All sides the same length All angles the same size
2	Direct proportion	Two quantities increase at the same rate
3	Indirect proportion	One variable increases at a constant rate as the second variable decreases
4	Constant of proportionality	Represented by k. Its value stays the same
5	Rate of change	The gradient of a tangent to the curve can be used to calculate the rate of change at any given point
6	Conversion graph	A line graph to convert one unit to another.

Subject: Maths
Term: Half Term 3 - November Part 2
Year Group: IOH
enjoy
learceed

Geometry \& Measure - Reflections, Rotations \& Translations		
I	Rotation - A "turning" movement of an image about a fixed point	Describe by - a) "Rotation" b) Angle of rotation c) Centre of rotation d) Direction of rotation
2	Reflection - A "flipping" movement across a mirror line	Describe by - a) "Reflection" b) The equation of the line of reflection
3	Translation -A "sliding" movement of an image	Describe by - a) "Translation" b) The column vector$\quad\binom{x}{y}$ x y is the horizontal movement

| Key Vocabulary | | |
| :--- | :--- | :--- | :--- |
| I | Chord | A line which touches the circumference at each
 end |
| 2 | Arc | A section from the circumference of a circle |

Subject: Maths
Term: Half Term - 5 March

Algebra - Quadratic Equations		
I	The quadratic graph is a "U-shaped" curve called a parabola. If $\mathrm{a}<0$, the parabola is upside down. A root is a solution to a quadratic equation. A quadratic equation may have no, one, or two solutions	
2	Solve a quadratic by factorising:	Make sure the equation $=$ 0 $a x^{2}+b x+c=0$ Use the products of ac that sum to b
3	Solving a quadratic using the quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	Use this method when an equation does not easily factorise
4	Solving a quadratic by completing the square: $(x+p)^{2}+q=0$	Use this method when you want to find the vertex. It's co-ordinates are (-p, q)

Ratio, Proportion and rates of changeSimilarity

```
Scale Factor
```

To find the scale factor, divide a length on one shape by the corresponding length on a similar shape

Algebra - Simultaneous Equations		
I	Solving graphically	The points of intersection are the solution
2	Solving by elimination	Usully used for linear equations- same signs subract, diferent signs add.
3	Solving by substitution	Usully used for quadratic equations - Rearrange and Susstiute

Geometry and Measures - Vectors

\mathbf{I}	Vector Notation	A vector can be written in 3 ways:
2	Parallel vectors are or $\overrightarrow{A B}$ or $\left.\quad \begin{array}{l}\mathbf{1} \\ \mathbf{3}\end{array}\right)$ multiples of each other.	2a+b and 4a+2b are parallel as 4a+2b =2(2a+b)
$\mathbf{3}$	Collinear vectors are vectors that are on the same line.	To show this you must show that they are parallel and that they share a point.
$\mathbf{4}$	Resultant vectors	The resultant vector is the vector that results from adding two or more vectors together.
5	Scalar of a vector	A scalar is the number we multiply the vector by

Statistics - Scatter Graphs

\\|	Causality	When one variable influences another variable
2	Line of best fit	A straight line that best represents the data on a scatter graph
3	Outlier	A value that "lies outside" most of the values in the data set
4	Positive, Negative or No Correlation	

Key Vocabulary

I	Quadratic	A quadratic expression is of the form: $a x^{2}+b x+c$
2	Coefficient	A number used to multiply a variable.
3	Vector	A vector is a quantity with both direction and magnitude.
4	Magnitude	The length of a vector
6	Similar Shapes	The same shape but different sizes
7	Correlation	The connection between 2 data sets

