Beckfoot Subject: Maths			-	Term: Half Term I - June Year				r G	roup:10F	enjoy Jean succeed		
Geometry and Measure – Angles				Number – Fractions and Decimals					Key Vocabulary			
1	Acute Angle	Acute angles are less than 90°.	1	Multiplying Fractions	multiply the de	merators together and nominators together.			Integer	A whole number that can be positive, negative or zero.		
2	Obtuse Angle	Obtuse angles are greater than 90° but less than 180°.	2	Dividing Fractions Adding or Subtracting	Find the LCM o common denor			2	Fraction	A number that represents a part of a whole. It consists of a numerator and a denominator. The numerator represents the		
3	Reflex Angle	Reflex angles are greater than 180° but less than 360°.		Fractions	fraction to the Then just add o	alent fractions to change each the common denominator . add or subtract the numerators the denominator the same.				number of equal parts of a whole, while the denominator is the total number of parts that make up said whole.		
4	Right Angle	Right angles are exactly 90°.	8	Angles at a Point	d a c b	Angles around a point up to 360°.	add	3	Reciprocal	To get the reciprocal of a number, we divide 1 by the number. Eg.		
5	Corresponding Angles	Corresponding angles are equal.	9	Angles on a strai	$a+b+c+d=360^{\circ}$	Angles around a poin	ton			the reciprocal of 2 is ½		
	, ,	They look like F angles, but never say this in the exam.	9	Angles on a strai	$\frac{x}{x+y} = 180^{\circ}$	a straight line add up 180°.		4	Mixed Number	A number formed of both an integer part and a fraction part . $3\frac{2}{5}$ is an example of a mixed number.		
6	Alternate Angles	Alternate angles are equal. They look like Z angles, but never say this in the exam. Co - Interior angles	10	Right Angle Triang angle in. Isosceles Triangles sides and 2 equal	s have 2 equal base angles.	Right Angled Isosceles		5	Equivalent Fractions Parallel Lines	Fractions which represent the same value. $\frac{2}{5} = \frac{4}{10} = \frac{20}{50} = \frac{60}{150} \text{ etc.}$ Two or more lines which are equal		
	called supplementary)	add up to 180°.		Equilateral Triang sides and 3 equal Scalene Triangles sides and differen	angles (60°). have different	60° 60° 60° Equilateral Scalence	e	7	Perpendicular	distance apart (Think train tracks) Lines which cross at a 90 degree angle.		

	r Be	_ŪD eckfoot	Subject: Maths	Term: Half Term 2 - September				lear Group:10F	enjoy lean succeed
Α	Algebra – Working with Symbols				ometry and Me	easure – Area	Ke	ey Vocabulary	
1	Simplifying expressions	x^2 and x a	with negatives. re not like terms.		l Perimeter	1	1	Expression	A mathematical statement written using symbols, numbers or letters ,
	Collect 'like terms'.	3x + 4	y + 4x - 5y + 3 = 6x - 2y + 3 $x - x^{2} + 2x - 1 = 5x - x^{2} + 3$	1	Area of a rectangle/square Length x Width	4 cm	2	Percentage multipli	ers The number you multiply a quantity by to increase or decrease it by a percentage .
2	Bracket Expansion	the bracke bracket.	a bracket, multiply each term in t by the expression outside the 3(m + 7) = 3x + 21 Se of expanding. Factorising is	2	Area of a Triangle Base x Height ÷ 2	$A = 36cm^2$	3	Reverse percentage	Find the correct percentage given in the question , then work backwards to find 100% Look out for words like ' before' or
3	Factorise	writing an by 'taking	expression as a product of terms out' a common factor. = $3(2x - 5)$, where 3 is the	3	Area of a parallelogram Base x Perpendicular Height	$4 \text{ or } 5 \text{ or } 7 \text{ or } A = 21 \text{ cm}^2$	4	Perimeter	'original' The total distance around the outside of a shape.
N	umber - Pe	common f	actor.	4	Area of a Circle	$A = \pi r^2$ which means 'pi x radius squared'.	5	Area	The amount of space inside a shape.
1	Percentage multipliers		Itiplier for increasing by 12% is 1.12		Circumference of a Circle	C = π d which means 'pi x diameter'	St	tatistics – Scatto	er Graphs
2	Percentage change	,	riginal value) x 100%	Rat	tio, Proportion	and rates of	1	Causality	When one variable influences another variable
3	Reverse		s priced at £48.60 after a 10% nd its original price.	cha	inge – Ratio			Line of best fit	A straight line that hast represents
	Percentage	100% - 10% = 90% = £48.60 1% = £0.54	90%	1	Unitary Method	Find the value of a single unit first, and then the value of	2	Line of best fit	A straight line that best represents the data on a scatter graph
4	Simplifying Ratios	100% = £54 Divide all parts 5 : 10 = 1 : 2 (o	s of the ratio by a common factor . divide both by 5) (divide both by 7)			the required number of units by multiplying	4	Positive, Negative of No Correlation	Positive correlation Negative correlation No correlation x x x x x x x x x x

		ୁ ସିହି୍କ Beckfoot	Subject	: Maths	Term	: Half Term 3 - N	ovember	Year G	roup	:IOF	enjoy learn succeed
A	Algebra - Equations					Geometry and M	easure – Loci	Key Vocabulary			
1	equation sides of the equation (balancing method) until you Ad find the value for the letter.		Solve $2x - 3 = 7$ Add 3 on both sides		The locus of points closer to B than A,	between A and B and s side closer to B.			Equation	A statement showing that two expressions are equal i.e 2y-17=15	
			or the letter.	Divide by 2 on both	2	The locus of points equidistant from A	Use a compass to draw around centre A	Use a compass to draw a circle around centre A		Quadratic	A quadratic expression is of the form: $ax^2 + bx + c$
				sides $x = 5$	3	equidistant to line X ar	Create an angle bisector d				
2	Solve a quadratic	Make sure the	$ax^{2} + bx + c$			line Y,	et Create two semi-circles	at aith ar			
	by Use the products of ac that factorising:		c that sum to b	4	The locus of points a s distance from a line,	end joined by two parallel lines.		3	Vertex	A corner or a point where two lines meet.	
Geo	Geometry and Measure - Constructions				4	Algebra – Co-ordinates and Graphs				Equidistant	A point is equidistant from a set of objects if the distances between that point and each of the objects is
1	Angle Bisecto Cuts the ang		1. Place the sharp end of a pair of compasses on the vertex (corner).		1	Finding the gradient	Change in y				the same.
	half.			ng a point on each			Change in x		5	Congruent Shapes	Shapes are congruent if they are identical - same shape and same
		line. 3. Without changing t		changing the compass put the each point and mark a centre two arcs cross over.		Finding the Equation of a Line	Substitute in the gradient (m) and point (x,y) in to the equation $y = mx + c$ and solve for c.			Shapes	size.
			here two arcs			<u>given a point and a</u> gradient			6	Gradient	The gradient of a line is how steep it is.
2	Augle Biseder4. Use a ruler to draw a line through the vertex and centre point.Perpendicular1. Put the sharp point of a compass on A.		A.	7. Finding the Equation of a Line given two points	Use the two points to ca gradient. Then repeat the above using the gradient	Ratio, Proportion and rates of change - Similarity					
Z	Bisector: Cut line in half ar right angles.	sa 2. Op ndat the 3. Dra	en the compass over half way on line. v an arc above and below the line. out changing the compass, repeat		2.	Parallel Lines	of the points. If two lines are parallel , t have the same gradient . of m will be the same for	el , they will nt . The value		Scale Factor	To find the scale factor, divide a length on one shape by the corresponding length on a similar shape

Beckfoot Subject: Maths				Ferm: Half Term 4	- January	Year Gr	ou	p:10F	enjoy léain succeed
Pro	Probability			lumber – Indices	and Standard Form		Key Vocabulary 1 Formulae Show the relationship between		
1	Theoretical Probability	Number of Favourable Outcomes Total Number of Possible Outcomes	1	Square Number 1, 4, 9, 16, 25, 36, 49,	The number you get when you mul number by itself.	ltiply a	1 2	Formulae Substitution	two or more variables Replace letters with numbers.
2	Relative Frequency	Number of Successful Trials Total Number of Trials		64, 81, 100, 121, 144, 169, 196, 225		'	3	Inverse	Opposite
3	Sample Space	The set of all possible outcomes of an experiment. + 1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8	2	Cause Deat	The number you multiply by itself to another number (The reverse proc	-	4	Volume	The amount of space inside a solid shape.
		3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6 7 8 9 10 11 12	3	Cube Number	squaring a number) The number you get when you multiply a number by itself and itself again .		5	Surface Area	The total area on the surface (faces) of a three-dimensional shape
	Geometry and Measure – Area, Length and Volume			1, 8, 27, 64, 125 Cube Root $\sqrt[3]{125} = 5$	The number you multiply by itself a again to get another number. The reverse process of cubing a nu		6	Prism	A prism is a 3D shape whose cross section is the same throughout.
1	Volume of a Cube/Cuboid V= Length × Width × Height	volume = $6 \times 5 \times 3$ = 90 cm^3	4	Multiplying with Standard Form (1.2×10^3) $\times (4 \times 10^6)$ $= 8.8 \times 10^9$	Multiply the numbers and add the p	oowers.	7	Standard Form Mutually	$A \times 10^{b}$ where $1 \le A < 10$, b = integer (whole number) Events are mutually exclusive if
² v	Volume of a Prism V = Area of Cross Section	$V = \pi(4)(5)$ $= 62.8cm^3$	5	Dividing with Standard Form	Divide the numbers and subtract the powers.	he		Exclusive	they cannot happen at the same time.
>	× Length			(4.5×10^5) $\div (3 \times 10^2)$ $= 1.5 \times 10^3$			Α	lgebra - Foi	
36	6. Volume of a Cylinder V $V = \pi r^2 h$	$V = \pi x 2^2 x 5 = 62.8 \mathrm{cm}^3$ $5cm \qquad \qquad$	6	Adding or subtracting	Convert in to ordinary numbers, cal and then convert back in to standar		1	Writing Formulae (Derive) Substitute letters for words in the question.	

Beckfoot Subject: Maths			ns Teri	m: Ha	alf Term 6 - Ap	oril	Yea	ar Group: 10F	enjoy lean succeed	
	ometry and Me				nultaneous Eq		Ka			
Properties of PolygonsISum of Interior Angles. $(n-2) \times 180$ where n is the number of sides.2Size of Exterior Angle in a Regular $\frac{360}{n}$		(n-2) imes 180 where n is the	Equ two eacl	o or mo n involv	- A set of re equations, ving two or	2x + y = 7 $3x - y = 8$	1	y Vocabulary Quadratics	A quadratic expression is of the form	
			more variables (letters). $x = 3$ Geometry and Measures -			2	Vector	$ax^{2} + bx + c, a \neq 0$ A vector is a quantity represented by an arrow with both direction and magnitude.		
3	Polygon. Angles in a quadrilateral add up to 360°.	e.g		I	The resultant vector is the vector that results from adding two or more vectors together.	if $\underline{\mathbf{a}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ and $\underline{\mathbf{b}} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$ then $\underline{\mathbf{a}} + \underline{\mathbf{b}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$	3	Substitute	a = 3, b = 2 and c = 5. Find: 1. $2a = 2 \times 3 = 6$ 2. $3a - 2b = 3 \times 3 - 2 \times 2 = 5$ 3. $7b^2 - 5 = 7 \times 2^2 - 5 = 23$ Sum of the interior angles \div number of sides.	
	Algebra - QuadraticsIExpanding brackets – When multiplying two brackets.Use FOIL (y + 3)(y - 2) = y ² - 2y + 3y				A scalar is the number we multiply a vector	Example: 3a + 2b =	5	Exterior	If the side of a polygon is extended, the angle formed outside the polygon is the exterior angle.	
2	Factorising Quadra When a quadratic expression is in the	= (x +	5)(x + 2)		by.	$= 3\binom{2}{1} + 2\binom{4}{-1}$	6	Regular	If the angles are all equal and all the sides are of equal length.	
	$x^2 + bx + c$ find the numbers that add b and multiply to g	to give 10)	and 2 add to multiply to			$= \begin{pmatrix} 6 \\ 3 \end{pmatrix} + \begin{pmatrix} 8 \\ -2 \end{pmatrix}$ $= \begin{pmatrix} 14 \\ 1 \end{pmatrix}$	7	Polygon	Is a 2D shape with at least 3 straight sides.	