

নন
Beckfoot

Subject: Maths

Term: Half Term 3 - October

Year Group: 9F

 $P = \frac{\pi d}{2}$ + diameter

 $A = \frac{angle}{360} \times \pi r^2$

Arc length = $\frac{angle}{360}$ ×

Diameter

	Deckiool							
Numbe	er- Percentages		Ge	ometry and Meas	ure – Volume			
I	Percentage = out of 100	$80\% = \frac{80}{100} = \frac{4}{5}$	and	and Area				
2	Increase/decrease by a Percentage	Increase 30 by 15% 30 x 1.15 = 34.5 Decrease 50 by 10%	I	Circle (Area) $A = \pi r^2$	Circumference $C = \pi \times d$			
3	Percentage change	$50 \times 0.9 = 45$ $\frac{Change}{Original amount} \times 100$	2	Area & perimeter of a semicircle	$A = \frac{\pi r^2}{2}$ $P = \frac{\pi d}{2} + \text{diameter}$			
4	One quantity as a percentage of another	$\frac{one\ quantity}{another\ quantity}\ x\ 100$	3	Volume of any regular Prism	Area of the cross section (shaded) x			
5	Reverse percentage A jumper was priced at £48.60 after a 10%	$rac{\text{\pounds}48.60}{0.9} = \text{\pounds}54$			length			
	reduction. Find its original price.	100% - 10% = 90% 90% = £48.60 1% = £0.54 100% = £5	4	Area of a sector & arc length	$A = \frac{angle}{360} \times \pi r$ Arc length = $\frac{angle}{360}$ πd			
Algebra – Equations and Inequalities								

Solve an equation	Unknown (One side)	Unknown (both sides)	Brackets	Fractions
		(Eliminate smallest x)	Expand first	Multiplying by the
Use inverse	(+3) $2x - 3 = 7$			denominator eliminates
operations		(-2x) 5x + 6 = 2x + 12	3(x+7) = 3x + 21	the fraction
on both sides of the	$(\div 2) 2x = 10$	(1) 2 (1) 12	-	
equation (balancing		(-6) 3x +6 = 12	The solve using	$(x3) \frac{2x+6}{2x+6} = 10$
method) until you find	x = 5	$(\div 3)$ $3x = 6$	Datancing method	3 10
the value for the		$(\cdot \mathbf{J}) = \mathbf{J} \mathbf{X} = \mathbf{J}$		
letter.		× - 2		\rightarrow 2x + 6 = 30

Key Vocabulary							
I	congruent	Exactly the same in every way					
2	prism	3D version of a 2D shape					
3	Arc	A section of the circumference of a circle					
5	sector	'Pizza slice' the area between 2 radiuses					

Geometry and Measure - Construction								
Ι	 Bisect a line Place compasses at either end and go over half way making a curve. 	A set						
2	 Bisect an Angle Using a compass, draw a curve to meet the two lines (A and B) Use these points to find another meeting point, C. Draw a line through 	A B R						
3	Congruent Triangles	SSS,SAS,ASA,AAS,RHS						

Beckfoot Subject: Mat		hs Term: Half Term 4 - January Yea		ear Gr	oup: 9F	enjoy learn succeed				
Algebra - Formulae			Ratio, Proportion and rates of change –			Key	Key Vocabulary			
1	Writing Formulae (Derive) Substitute	Bob charges window and	compound Measures ow and a £5 call out			Gradient	How steep the line is at a particular point			
	question.	C = 3 Where N=nu windows and	N + 5 Imber of d C=cost		graph – finding the gradient graph – finding the gradient Gradient = <u>Change in distance</u> Change in time - Gradient = <u>Distance at B</u> - Gradient = <u>Distance at B</u> - Gradient = <u>Distance at B</u>		2	Substitution	Replacing a letter with a given number	
2	Expression, Equation, Identity, Formulae	An Expression 4a + 7b	$\frac{An Equation}{4a+12=60}$			returning to "zero point" (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Time at B – Time at A aradient = <u>70m – 10m = 60m</u> 6 – 3 3 aradient = 20m/s	3	squared	When a number is multiplied by itself
		A Formula An identity $A = \pi r^{2} \qquad (a+b)^{2} = a^{2} + 2ab + b^{2}$		"zero point"	time (s)		4	cubed	When a number is multiplied by itself then itself again.	
3	Substitution:	a = -3, b = 2	and $c = 5$.	Num	ber – Indices a	Ind Standard Form		5	Hypotenuse	Longest side of a right angled triangle
	replacing letters with negative numbers	tters with mbers 1. $2a = 2 \times -3 = -6$ 2. $3a - 2b = (3 \times -3) - 3$		I	Index Laws	Rule $a^x \times a^y = a^{x+y}$	Example $a^2 = a^{3+2} = a^5$	Ge Th	ometry and Me eorem	asure – Pythagoras
4	(2 Rearranging formulae: Use inverse operations on both sides of the formula (balancing method)	$(2 \times 2) = -13$	iect of $y = \frac{2x-1}{x}$			$\begin{array}{c c} a^{x} \div a^{y} = a^{x-y} & a^{0} \div \\ \hline & \left(a^{x}\right)^{y} = a^{xy} & \left(a^{2}\right) \end{array}$	$a^{2} = a^{6-2} = a^{4}$ $a^{3} = a^{2\times 3} = a^{6}$		Finding the hypotenu (longest side) $a^2 + b^2 = c^2$	se $a^{2} + b^{2} = c^{2}$ $3^{2} + 4^{2} = 25$ $\sqrt{25} = 5$ 5
		Provide a value of the subject of $y = \frac{z}{z}$ formula ancing method) If you the expression yz = 2x - 1 Add 1 to both sides yz + 1 = 2x Add 1 to both sides yz + 1 = 2x	2	Multiplying- Standard form	$(1.2 \times 10^3) \times (4 \times 1.2 \times 4 = 4.8$ 10 = 4.8 × 10 ⁹	10^6) = $0^3 \times 10^6 = 10^9$			3	
	until you find the expression for the letter		3	Dividing- Standard Form	$(4.5 \times 10^5) \div (3 \times 10^2)$	$= 1.5 \times 10^3$	2	Finding a shorter side	$a^2 = c^2 - b^2$	
	Divide by 2 on both $\frac{yz + z}{2}$ We now have x as t	both sides $\frac{yz+1}{2} = x$ as the subject.	4	Add/subtract- Standard Form	$2.7 \times 10^4 + 4.6 >$ $= 27000 + 4600 =$	× 10 ³ = 31600	3	Proving with Pythagoras	If $a^2 + b^2 = c^2$ Then Triangle is RIGHT ANGLED	

