Series

I

Make sure you have the correct leftover terms when using the method of Differences.
After most of the terms cancel out, the left over terms may not necessarily be the first and the last, and there may be more than two. You need to write out the first few terms and the last few terms in full to spot the pattern.
Make sure that you don't get the modulus of an $\mathrm{n}^{\text {th }}$ root of a complex number wrong.
Remember that $\left|z^{n}\right|=|z|^{n}$, and this applies not just to integer values of n, but includes rational values of n, as when taking roots of z.

Make sure that you get the right number of $\boldsymbol{n}^{\text {th }}$ roots of a complex number.
There should be exactly n of them. Remember two complex numbers which have the same moduli and arguments which differ by a multiple of 2π are actually the same number.

4
Make sure you can work comfortably with both the exponential and modulus-argument forms.
Sometimes it is better to use the former and sometimes it's better to use the latter, you need to be comfortable with both.

Complex Numbers

\| Make sure you get the statement of de Moivre's theorem right.
De Moivre's theorem says that $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$ for all integers n. It does not say, for example, that $\cos ^{n} \theta+i \sin ^{n} \theta=\cos n \theta+i \operatorname{sinn} \theta$ for all integers n. This is just one of numerous possible silly errors.

Check your answer by substituting \mathbf{n}. It is a good idea to substitute $\mathrm{n}=\mathrm{I}$, and perhaps $\mathrm{n}=2$ as well, to check your result.
3 Be careful when substituting into standard Maclaurin series.
Remember that if you are finding, for example, $e^{2 x}$ by substituting 2 x into the standard series, that you must find $(2 x)^{2}$, $(2 x)^{3}$ etc: remember to find the power of 2 as well as the power of x !
4

Make sure it's appropriate to use

 standard series.For example, you can't easily use standard series to find the expansion for $\ln (\cos x)$, because you would need to substitute the series for $\cos \mathrm{x}$ into every term of the series for $\ln x$ to get all the constant terms, and so on. In cases like these, you need to use repeated differentiation and substitute into the general Maclaurin formula

Sketching rational functions

I Factorise where possible.
Make sure that you always factorise both the numerator and the denominator if possible, and if they are not already given in factorised form. If you don't, you may miss vertical asymptotes or points where the graph cuts the x axis.

2 When sketching related graphs, think about important points.
Think about points where the original graph crosses the x-axis, or has an asymptote, or there is a turning point, and decide what happens to the new graph at this point. Also think about the behaviour of the new graph as $x \rightarrow \pm \infty$.
3 Don't rely on a graphical calculator. Graphical calculators often do not give you a clear idea of the shape of this type of graph. Some of the features may be off the screen, and turning points near a horizontal asymptote may not be clear. Changing the axes to see a larger part of the graph may mean that features are not clear. However, your calculator may be useful for checking. If you know the features you are looking for, then you can confirm them using the calculator. For example, you could zoom in on points on the x -axis to check the behaviour of the tangent.

Further Integration

I Look out for integrals which need partial fractions.
Make sure you recognise integrals which can be put into partial fractions, and make sure you know how to integrate each separate type of fraction.
Look out for integrals where a trigonometric substitution may be needed.
For integrals which involve a power or root of $a^{2}-x^{2}$, the substitution $x=$ $a \sin \theta$ may be useful, and for integrals which involve a power or root of $a^{2}+x^{2}$, the substitution $x=\operatorname{atan} \theta$ may be useful.

$y=\tanh (x)$

	Further Maths
Beckfoot	Polar Coordinates
I	Make sure you know how to find the area of a sector by integration. Remember that the area of a sector is found by integrating $\frac{1}{2} r^{2}$ with respect to θ.
2	Be careful with integration, in particular when integrating $\cos ^{2} \theta$ or sin $^{2} \theta$. Remember the use of the double angle identity to integrate cos ${ }^{2} \theta$ or $\sin ^{2} \theta$.
3	Make sure that you use the correct limits of integration. Always sketch the curve and use it to check the limits of the integration.

Polar Coordinates

area of a sector by integration.
Remember that the area of a sector is

Be careful with integration, in $\boldsymbol{\operatorname { s i n }}^{2} \theta$.
Remember the use of the double angle limits of integration.
Always sketch the curve and use it to check the limits of the integration.

$\left.\right|^{\text {st }}$ Order Differential Equations

I \quad Be careful with the sign when modelling a situation using a differential Equation.
Always consider carefully whether the rate of change is positive or negative

2
Be careful with notation.
Rate of change is denoted by $\frac{d}{d t}$. Always use the same letters for variables that are given in the question (for example don't change $\frac{d x}{d t}$ to $\frac{d y}{d x}$. If you change the letter used, then it may be difficult for the examiner to follow what you are doing. You can use the 'dot' notation if you like (i.e. \dot{x} denotes $\frac{d x}{d t}, \ddot{x}$ denotes $\frac{d^{2} x}{d t^{2}}$, but do make sure that your dots are clear!
Make sure that you include the arbitrary constant when integrating. Remember that you only need an arbitrary constant on one side of the equation.

Remember to include the modulus sign, if necessary, when integrating to give a logarithmic function.
Make sure that you think about whether it can be dropped, according to the context of the question.

Integrating Factor Method

- $\frac{d y}{d x}+P(x) y=Q(x)$
- I.F $=e^{\int P(x) d x}$

| Inverse of a 3×3 Matrix |
| :--- | :--- |

Matrices and Simultaneous Equations

I \quad Be careful when solving matrix equations for which the matrix has no inverse. It is tempting to immediately conclude that there is no solution, but in fact what this means is that there is no unique solution, and there may be either no solution or infinitely many solutions.

2
Make sure you understand the connection between three planes and the solution of three simultaneous equations.
If three planes intersect at a point, there is a unique solution If the planes form a sheaf, they intersect along a line so there are infinitely many solutions If the planes form a triangular prism, or if two or more of them are parallel, there are no solutions

Factorising Determinants	
\mathbf{I}	Remember the effects of operations you can use. You can add or subtract any multiple of one row or column to another without changing the determinant. Multiplying any row or column by a constant results in the determinant also being multiplied by the same constant
2	Look out for factors that can be taken out. When working with algebraic matrices, the factors may not be immediately obvious.

