							Voino	
	ہے۔تات Beckfoot	Further Maths		AS Pure		Year 12	succeed	
	Matrices and Transformations Check answers carefully It's easy to make careless			Make sure that you know the general rotation matrix The matrix for a rotation of anticlockwise about the origin is,	Invariance, Determinants and Inverses			
	mistakes in matrix a			θ		Remember that the origin is always an invariant		
2	Make sure that you can do matrix multiplication confidently This is fundamental to all work on matrices.		and that you $\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$ en if cos and/or can find the			point for a linear transformation Either the origins the only invariant point, or there are an infininumber of invariant points which all lie on the same straight line – a line of invariant points.		
3	commutative In gen	trix multiplication is not heral, AB ≠ BA. This is an easy we are all used to ordinary commutative.	0	 angle of rotation from the matrix, including cases where the angle is not in the first quadrant. Remember the useful result about the columns of a matrix The image of the point I (1, 0) gives the first column of the matrix, and the image of the point J (0, 1) gives the second column of the matrix. Make sure you multiply matrices in the correct order for composite transformations Remember that "transformation A followed by transformation B" is represented by the matrix BA. 	2	Make sure that you I a line of invariant po	now the difference between nts and an invariant line An int which is mapped to itself,	
4	for simple transform matrices for reflection the lines y = x and y rotation through 90° these look a bit simi	are familiar with the matrices nations You need to know the on in the x axis, the y axis and = -x, and the matrices for ° or 180° about the origin. All lar, with 0s, 1s and –1s, so can work out what they are	8 9			so a line of invariant points is a line of points ea of which is mapped to itself. An invariant line is line of points each of which is mapped to a poir which is also on the line (not necessarily itself). line of invariant points is, of course, also an invariant line.	o itself. An invariant line is a which is mapped to a point ine (not necessarily itself). A	
5	with a quick diagram Make sure that you matrices for enlarge				3	Remember the rule f product For square m (MN) ⁻¹ = N ⁻¹ M ⁻¹		
		ding diagonal giving you the ros in the other two positions.		A BE G	4	zero determinant for	rstand the significance of a r a matrix transformation For	
6	defined A shear has will meet the fixed li the y-axis). The shea fixed line and the im The shear factor is the	understand how a shear is a fixed line (in the cases you ine will be either the x-axis or ar can be defined by giving the hage of a point not on the line. he distance moved by a point ndicular distance from the		T N		a matrix with zero determinant, all points on the plane are mapped to a straight line through the origin, and each set of object points which are mapped to a single image point all lie on a straight line.	a straight line through the of object points which are	

1 BE 1

0.12

ہے۔ Beck	foot	Further Maths		AS Pure		Year 12	enjoy Jeorn succeed	
	Complex Numbers			Roots of Polynomials		Conics		
1	you are we you should Remembe	Always simplify i ² Remember that when you are working with complex numbers, you should always simplify i ² to -1. Remember that zz* is always real In particular, remember that you can use this in dividing complex numbers.		Check your algebra The most common problem in this topic is mistakes with algebra. The algebra can be quite complicated, but if you can do this then it will help you in all areas of mathematics.	Ι	Learn the equations of the conics You need to know the equations of the standard parabola, ellipse, hyperbola and rectangular hyperbola. Also make sure you know where they cross the axes, and in the		
				Make sure that you have learnt the		case of the hyperbola, the equations of the asymptotes.		
3	for equalities be equal, the equal, the equal of the equa	e that you know the condition ty For two complex numbers to the real parts must be equal and nary parts must be equal.	2	relationships between roots and coefficients In particular, make sure that you remember the pattern of alternating signs in the relationships between roots and coefficients.	2	Make sure you know how to deal with transformations You need to be able to work with translations, stretches and reflections in the lines y x 🛙 and y x		
4	numbers of Remember and z* are axis, and t	e that you can plot complex correctly on the Argand diagram er in particular that the points z e reflections of each other in the x that the points z and –z are of each other through 180° about	3	Be careful with the Σ notation In particular, make sure that you know how many terms are involved in each case: for example, for a cubic then $\Sigma \alpha \beta$ has three terms, but for a quartic $\Sigma \alpha \beta$ has six terms.	3	Make sure that you know whether a line crosses a c the equation of a straight equation of a conic gives y equation to solve. If this q	urve Substituting line into the you a quadratic uadratic equation	
5	the origin. Make sure addition a diagram Y complex n only by a p	e that you know how to show and subtraction in the Argand You need to understand that a number can be represented not point in the Argand diagram, but	4	Remember that complex roots of polynomial equations with real coefficients always occur in conjugate pairs This means that if you know one complex root, then you know another one. Note: this does not apply if the coefficients of the equation are not real!		has two roots, then the line crosses the conic once. If it has a repeated root, the line touches the conic (i.e. it is a tangent). I it has no real roots, then the line does not meet the conic.		
		atively by a vector. Be rational Get real.	5	Make sure that you can divide a polynomial by a linear or quadratic factor This is covered in AS Mathematics – look back at this work if you need to.		ellipse parabola hyperb		
		í ÌT		Check your work carefully It is easy to make mistakes in the algebra when solving polynomial equations.)	

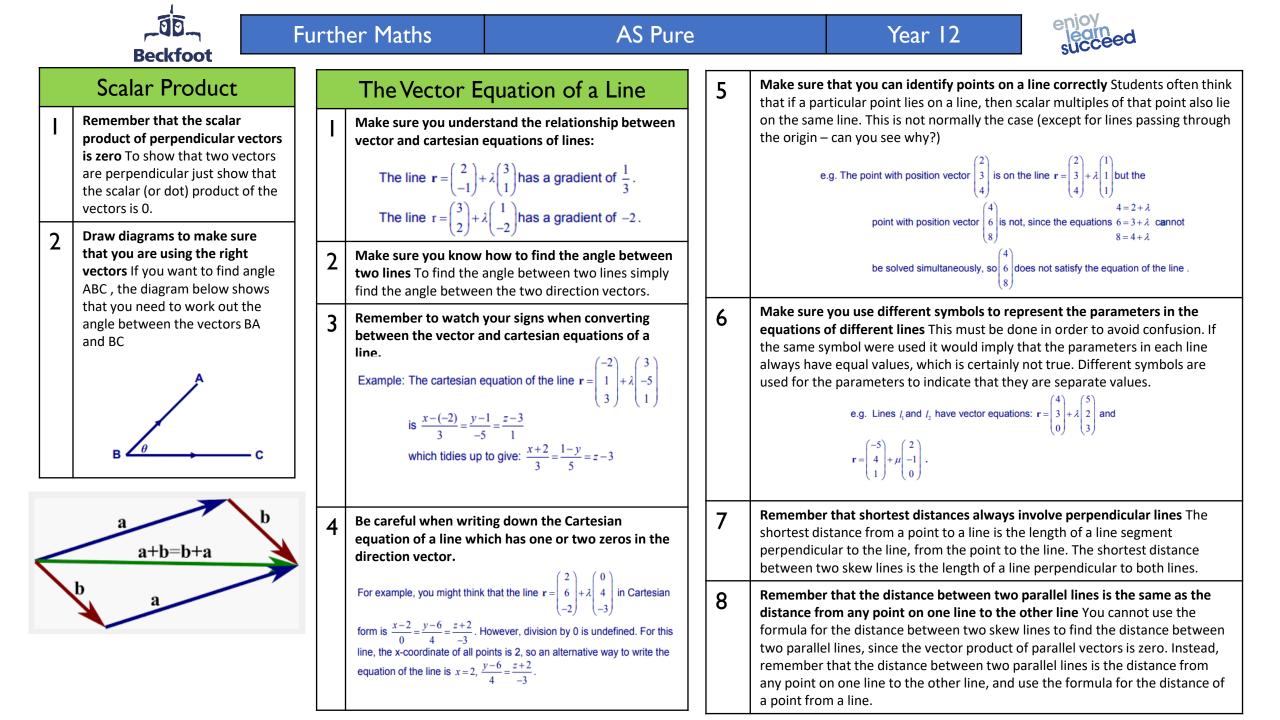
آلاً۔ Beckt		Further Maths		AS Pure		Year 12	enjoy léarn succeed	
Hyperbolic Functions			Summing Series		Proof by Induction			
I	properties the circular	hixed up between the of the hyperbolic functions and functions In particular, don't $x \equiv 1$ and $\cosh^2 x - \sinh^2 x \equiv 1$	I	Make sure you have the correct left-over terms when using the method of differences After most of the terms cancel out, the left over terms may not necessarily be the first and the last, and there may be		Understand the concept Make survivoureally understand the principle proof by induction. The Notes and Examples should help.		
hyperbol functions remember tanh x. Yo	hyperbolic	ake sure you know the graphs of the perbolic and inverse hyperbolic nctions Make sure that you can member the graphs for sinh x, cosh x and hh x. You can use these to find the graphs		more than two. You need to write out the first few terms and the last few terms in full to spot the pattern.	2	Always think about what you are aiming for! When you take the assumed result for n = k and add on the $(k + 1)$ th term, you want to rearrange this to get the formula for $n = k + 1$. It may help to actually write down the result you are looking for.		
	remember tanh x. You		2	2 Check your answer by substituting for n Whether using the method of differences or standard results to find a sum of the first n terms of a series, it is a good idea to substitute n = 1, and perhaps n = 2 as well, to check your result.				
3 Rememb symmetr that there possible v using the inverse co	Remember symmetrica	he inverse hyperbolic functions. Hember that the graph of cosh x is metrical about the y-axis This means there are two values of x for every sible value of cosh x. Remember that g the logarithmic formula for the erse cosh function will give you just the tive value for x.			3	Be careful with algebraic easy to make mistakes. T result you are aiming for	hinking about the (see above) often	
	possible val using the lo inverse cosl		3	Factorise where possible When using standard results, there can be quite a lot of algebra involved in simplifying the result. Make sure you take out any common factors first as this makes the algebra a lat simpler.	4	helps, as it may give you a factors you could take ou Make sure that you write correctly Remember that steps involved, and you w	t. e out the proof there are three	
4 Be careful when evaluating inverse hyperbolic functions You sometimes need to deal with some quite complicated		erbolic functions You sometimes need		first, as this makes the algebra a lot simpler. Maclaurin Series		you don't, for example, write down the conclusion of the argument (Step 3).		
	logarithmic functions when using the inverse hyperbolic functions. It is very easy to make careless mistakes, so always check your work. If your calculator has the hyperbolic functions on it, you can use it to double-check your answer.	I	Be careful when substituting into standard Maclaurin series Remember that if you are finding, for example, 2 e x by substituting 2x into the standard series, that you must find $(2x)^2$, $(2x)^3$ etc: remember to find the power of 2 as well as the power of x!		PR	00		
			2	Remember that some of the standard series are valid only for certain values of x				

The ranges of validity are given in your

formula book.

2

3


Further Maths

Year 12

Volume of Revolution	Further Complex Numbers	Loci in the Complex Plane		
Don't forget the π in the volume of revolution formula Remember the formulae:	Be very careful when you find the argument of a complex number Always decide first which quadrant the complex number is in, and remember	You should recognise equations and inequalities which represent circles Any set of points of the form $ z - (a + bi) = r$ is represented by a circle, centre $a + bi$, radius r.		
$V = \int_{a}^{b} \pi y^{2} dx$ and $V = \int_{c}^{d} \pi x^{2} dy$ Make sure that you use the correct limits of integration Remember that if you are rotating about the x-axis, the limits of integration must be x-coordinates, and if you are rotating about the yaxis, the limits of integration must be y- coordinates.	that when you have worked out the value of on your calculator, $\frac{y}{x}$ this will only be correct for complex numbers in the first and fourth quadrant. For the second quadrant, you need to add π , and for the third quadrant you need to subtract π . It's a good idea to make a rough sketch of the number on an Argand diagram, so you can 'see' the argument.	2 You should recognise equations and inequalities which represent perpendicular bisectors Any set of points of the form z-(a+bi) = z-(c+di) is represented by the perpendicular bisector of the line joining the points a + bi and c + di. Don't mix this up with the circle locus!		
Remember to integrate with respect to the correct variable You need to substitute for x^2 or y^2 to do this. Example Find the volume of revolution of $y = x^2$ about the x-axis between x = 0 and x = 1	$z = a + bi$ $extremely arg z$ $arg z = \pi - \theta,$ $where \ \theta = \arctan\left(\frac{b}{a}\right)$	3 Make sure you show sets of points involving the argument correctly Remember that for the set of points $arg(z - (a + bi)) = \theta$ the set of points is a half-line starting from the point $z = a + bi$. However the point $z = a + bi$ is not included and should be shown by an open circle.		
$\bigvee \text{Wrong} V = \int_0^1 \pi y^2 dx = \pi \left[\frac{1}{3}y^3\right]_0^1 = \frac{1}{3}\pi$ $\checkmark Right V = \int_0^1 \pi y^2 dx = \int_0^1 \pi x^4 dx = \pi \left[\frac{1}{5}x^5\right]_0^1 = \frac{1}{5}\pi$	2 Use the modulus-argument form correctly Remember that the modulus-argument form of a complex number must be of the form $r(\cos\theta + i\sin\theta)$ with r positive. Why can't we be together?	4 Use the correct range for the argument Remember that the possible values of arg z are given by $-\pi < \arg z \le \pi$ Make sure when drawing sets of points of the form $\arg(z - (a + bi)) \le \theta$ or $\arg(z - (a + bi)) \ge \theta$ that you use the correct range for the argument.		
y = f(x)	√	5 Be careful with inequalities A set of points defined using an inequality represents a region. Remember that if < or > are used, the boundary of the region (a circle or a line) is not included and should be shown as a dotted line, but if ≤ or ≥ are used, the boundary is included and should be shown as a solid line.		

Beck	Further Maths		AS Pure		Year 12		
Polar Coordinates and Curves			Rational Functions		Inequalities		
Ι	Make sure you plot polar coordinates correctly Always make sure that you check whether Θ is positive or negative.		Factorise where possible Make sure that you always factorise both the numerator and the denominator if possible, and if they are not		Be careful to use the correct inequality sign in your answers If the question involves < or >, the solution set should		
2	 Make sure you change Cartesian coordinates into polar coordinates correctly When finding Θ, make sure that you know which quadrant the point is in. Make sure that you sketch polar graphs correctly Look for any points at which r is zero or takes its maximum or minimum value. Decide whether r is increasing or 		already given in factorised form. If you don't, you may miss vertical asymptotes or points where the graph cuts the x axis.		<pre>involve < or >. However, be careful when the question involves ≤ or ≥, as sometimes the answer may involve < or > (see point 2 below).</pre>		
3			Put all the information that you have on to your initial sketch Remember when completing the sketch that the graph cannot cross the x axis at any point other than the points which you found in Step 1.	2	Watch out for points where the function is undefined Points which are undefined, such as at an asymptote, must not be included in your solution set.		
×	decreasing between these points.	3	Don't be too hasty in completing the sketch Make sure that there is only one possible way in which you can do it. If there isn't, then obtain the extra information you need, such as the sign of y near the asymptotes.	3	Remember that you cannot multiply through by a quantity which may be positive or negative You can't multiply through by an expression such as $(x - 3)$, which is positive for some values of x and		
E			Make sure that you know how to find a turning point without using calculus Remember that at a local maximum or minimum point, the graph touches a horizontal line y = k, so the equation f(x) = k		negative for others. However, you could multiply through by a quantity such as (x – 3) ² which is always positive – but if you do, remember that in this case x = 3 must be excluded from the solution set.		
Ar Kendall's calculators can draw			(rearranged to form a quadratic in x) has a repeated root. $y = (x + 1)^2(x - 2)$		Watch out for points where a function becomes zero but does not change sign If you want to solve an inequality of the form $f(x) \ge 0$, an isolated point where the graph of $y = f(x)$ touches the x axis must be included. For example, to solve the inequality $(x + 1)^2(x - 2) \ge 0$, the graph below shows that $x \ge 2$ is part of the solution, but $x = -1$ is also part of the		

Mr Kendall's calculators can draw each and every one of these!

